BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3779001)

  • 1. Cooperative polymerization reactions. Analytical approximations, numerical examples, and experimental strategy.
    Goldstein RF; Stryer L
    Biophys J; 1986 Oct; 50(4):583-99. PubMed ID: 3779001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway.
    Bishop MF; Ferrone FA
    Biophys J; 1984 Nov; 46(5):631-44. PubMed ID: 6498276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism.
    Ferrone FA; Hofrichter J; Eaton WA
    J Mol Biol; 1985 Jun; 183(4):611-31. PubMed ID: 4020873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On one-dimensional nucleation and growth of "living" polymers. II. Growth at constant monomer concentration.
    Rangarajan SK; de Levie R
    J Theor Biol; 1983 Oct; 104(4):553-70. PubMed ID: 6645561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Determination of the kinetic association and dissociation constants of proteins].
    Kurenbin OI; Vilenchik LZ; Gotlib IuIa; Belen'kii BG
    Biofizika; 1979; 24(2):222-6. PubMed ID: 444598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation-conversion-polymerization reactions of biological macromolecules with prenucleation clusters.
    Garcia GA; Cohen SI; Dobson CM; Knowles TP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032712. PubMed ID: 24730879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On one-dimensional nucleation and growth of "living" polymers I. Homogeneous nucleation.
    Firestone MP; de Levie R; Rangarajan SK
    J Theor Biol; 1983 Oct; 104(4):535-52. PubMed ID: 6645560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirements for generating sigmoidal time-course aggregation in nucleation-dependent polymerization model.
    Kodaka M
    Biophys Chem; 2004 Feb; 107(3):243-53. PubMed ID: 14967239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuations in the polymerization of sickle hemoglobin. A simple analytic model.
    Szabo A
    J Mol Biol; 1988 Feb; 199(3):539-42. PubMed ID: 3351941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves.
    Hofrichter J
    J Mol Biol; 1986 Jun; 189(3):553-71. PubMed ID: 3783684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General method of analysis of kinetic equations for multistep reversible mechanisms in the single-exponential regime: application to kinetics of open complex formation between Esigma70 RNA polymerase and lambdaP(R) promoter DNA.
    Tsodikov OV; Record MT
    Biophys J; 1999 Mar; 76(3):1320-9. PubMed ID: 10049315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplifying principles for chemical and enzyme reaction kinetics.
    Klonowski W
    Biophys Chem; 1983 Sep; 18(2):73-87. PubMed ID: 6626688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining rate constants for irreversible polymerization where the initial step and propagation steps have different rate constants: consideration of polyadenylate polymerase.
    Cohen RJ
    J Theor Biol; 1991 Jun; 150(4):529-37. PubMed ID: 1943132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The determination of equilibrium constants for heterogeneous macromolecular interactions.
    Zimmerman JK; Crowl-Powers ML
    Biophys Chem; 1988 Apr; 29(3):231-43. PubMed ID: 3390525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical solutions of a simple enzyme kinetic problem by a perturbative procedure.
    Seshadri MS; Fritzsch G
    Biophys Struct Mech; 1980; 6(2):111-23. PubMed ID: 7388120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characterization of human immunodeficiency virus type 1 protease: determination of inhibitor rate constants during dynamic monomer-dimer interconversion.
    Morelock MM; Graham ET; Erdman D; Pargellis CA
    Arch Biochem Biophys; 1996 Apr; 328(2):317-23. PubMed ID: 8645010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics and kinetics of actin filament nucleation.
    Sept D; McCammon JA
    Biophys J; 2001 Aug; 81(2):667-74. PubMed ID: 11463615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confinement as a determinant of macromolecular structure and reactivity.
    Minton AP
    Biophys J; 1992 Oct; 63(4):1090-100. PubMed ID: 1420928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws.
    Schnell S; Turner TE
    Prog Biophys Mol Biol; 2004; 85(2-3):235-60. PubMed ID: 15142746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.