These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3779006)

  • 21. Interaction of Mn2+ with DNA as studied by proton-relaxation enhancement of solvent water.
    Van Steenwinkel R; Campagnari F; Merlini M
    Biopolymers; 1981 May; 20(5):915-23. PubMed ID: 7194698
    [No Abstract]   [Full Text] [Related]  

  • 22. Manganese ions as a calcium ion probe: use of water proton spin-lattice relaxation measurements [proceedings].
    Micklem KJ; Pasternak CA; Gibson JF; Sheppard RN
    Biochem Soc Trans; 1979 Oct; 7(5):960. PubMed ID: 510757
    [No Abstract]   [Full Text] [Related]  

  • 23. Magnetic resonance studies of manganese(3) and iron(3) superoxide dismutases. Temperature and frequency dependence of proton relaxation rates of water.
    Villafranca JJ; Yost FJ; Fridovich I
    J Biol Chem; 1974 Jun; 249(11):3532-6. PubMed ID: 4598477
    [No Abstract]   [Full Text] [Related]  

  • 24. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Test of Electron Delocalization Effects on Water-Proton Spin-Lattice Relaxation by Bromination of [Tetrakis(4-sulfonatopheny)porphine]manganese.
    Bryant LH; Hodges MW; Bryant RG
    Inorg Chem; 1999 Mar; 38(5):1002-1005. PubMed ID: 11670874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear magnetic relaxation by the manganese in aqueous suspensions of chloroplasts.
    Wydrzynski TJ; Marks SB; Schmidt PG; Govindjee ; Gutowsky HS
    Biochemistry; 1978 May; 17(11):2155-62. PubMed ID: 667017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water proton relaxation as a monitor of membrane-bound manganese in spinach chloroplasts.
    Wydrzynski T; Zumbulyadis N; Schmidt PG; Govindjee
    Biochim Biophys Acta; 1975 Dec; 408(3):349-54. PubMed ID: 172133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paramagnetic proton nuclear spin relaxation theory of low-symmetry complexes for electron spin quantum number S = 52.
    Strandberg E; Westlund P
    J Magn Reson; 1999 Apr; 137(2):333-44. PubMed ID: 10089167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionophoric properties of angiotensin II peptides. Nuclear magnetic resonance kinetic studies of the hormone-mediated transport of manganese ions across phosphatidylcholine bilayers.
    Degani H; Lenkinski RE
    Biochemistry; 1980 Jul; 19(15):3430-4. PubMed ID: 7407051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of surface residues in the trp repressor of Escherichia coli.
    Lane AN; Jardetzky O
    Eur J Biochem; 1985 Oct; 152(2):411-8. PubMed ID: 2996891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclear magnetic resonance study of the binding of phosphoenolpyruvate and phosphoenol-alpha-ketobutyrate to manganese pyruvate kinase. Temperature, frequency,and monovalent cation dependence of water proton nuclear magnetic resonance relaxation rates.
    James TL; Reuben J; Cohn M
    J Biol Chem; 1973 Sep; 248(18):6443-9. PubMed ID: 4730326
    [No Abstract]   [Full Text] [Related]  

  • 32. Magnetic field dependence of proton relaxation rates in tissue with added Mn2+: rabbit liver and kidney.
    Koenig SH; Brown RD; Goldstein EJ; Burnett KR; Wolf GL
    Magn Reson Med; 1985 Apr; 2(2):159-68. PubMed ID: 3938510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordinative binding of divalent cations with ligands related to bacterial spores. Equilibrium studies.
    Chung L; Rajan KS; Merdinger E; Grecz N
    Biophys J; 1971 Jun; 11(6):469-82. PubMed ID: 5569493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative characterization of the binding of histamine by heparin.
    Rabenstein DL; Bratt P; Peng J
    Biochemistry; 1998 Oct; 37(40):14121-7. PubMed ID: 9760248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic field dependence of proton spin-lattice relaxation times.
    Korb JP; Bryant RG
    Magn Reson Med; 2002 Jul; 48(1):21-6. PubMed ID: 12111928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Paramagnetic relaxation of protons in rotationally immobilized proteins.
    Korb JP; Diakova G; Bryant RG
    J Chem Phys; 2006 Apr; 124(13):134910. PubMed ID: 16613480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A nuclear magnetic resonance study of hydrated systems using the frequency dependence of the relaxation processes.
    Outhred RK; George EP
    Biophys J; 1973 Feb; 13(2):83-96. PubMed ID: 4702016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of protein hydration by proton spin relaxation time measurements.
    Blicharska B; Florkowski Z; Hennel JW; Held G; Noack F
    Biochim Biophys Acta; 1970 Jun; 207(3):381-9. PubMed ID: 4318114
    [No Abstract]   [Full Text] [Related]  

  • 39. High frequency dynamics in hemoglobin measured by magnetic relaxation dispersion.
    Victor K; Van-Quynh A; Bryant RG
    Biophys J; 2005 Jan; 88(1):443-54. PubMed ID: 15475581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arrangement of the phosphate-and metal-binding subsites of phosphoglucomutase. Intersubsite distance by means of nuclear magnetic resonance measurements.
    Ray WJ; Mildvan AS
    Biochemistry; 1973 Sep; 12(19):3733-43. PubMed ID: 4788310
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.