These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Automated analysis of microplastics based on vibrational spectroscopy: are we measuring the same metrics? Dong M; She Z; Xiong X; Ouyang G; Luo Z Anal Bioanal Chem; 2022 May; 414(11):3359-3372. PubMed ID: 35166866 [TBL] [Abstract][Full Text] [Related]
26. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy. Wang L; Putnis CV Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501 [TBL] [Abstract][Full Text] [Related]
27. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Dendisová M; Jeništová A; Parchaňská-Kokaislová A; Matějka P; Prokopec V; Švecová M Anal Chim Acta; 2018 Nov; 1031():1-14. PubMed ID: 30119727 [TBL] [Abstract][Full Text] [Related]
28. Vibrational Spectroscopic Monitoring of the Gelation Transition in Nafion Ionomer Dispersions. Liang Y; Kitt JP; Minteer SD; Harris JM; Korzeniewski C Appl Spectrosc; 2021 Apr; 75(4):376-384. PubMed ID: 32700554 [TBL] [Abstract][Full Text] [Related]
29. Irreversible Damage of Polymer Membranes During Attenuated Total Reflection Infrared Analysis. Kiefer J; Wei G; Colombi Ciacchi L; von Lieres E Appl Spectrosc; 2017 Jun; 71(6):1127-1133. PubMed ID: 27650981 [TBL] [Abstract][Full Text] [Related]
31. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR). Blum MM; John H Drug Test Anal; 2012; 4(3-4):298-302. PubMed ID: 22113892 [TBL] [Abstract][Full Text] [Related]
33. Application of Infrared Reflectance Spectroscopy on Plastics in Cultural Heritage Collections: A Comparative Assessment of Two Portable Mid-Fourier Transform Infrared Reflection Devices. Angelin EM; de Sá SF; Soares I; Callapez ME; Ferreira JL; Melo MJ; Bacci M; Picollo M Appl Spectrosc; 2021 Jul; 75(7):818-833. PubMed ID: 33599540 [TBL] [Abstract][Full Text] [Related]
34. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils. Ramachandran G Methods Mol Biol; 2017; 1523():113-128. PubMed ID: 27975247 [TBL] [Abstract][Full Text] [Related]
35. Progress in the applications of atomic force microscope (AFM) for mineralogical research. Liu Q; Fu Y; Qin Z; Wang Y; Zhang S; Ran M Micron; 2023 Jul; 170():103460. PubMed ID: 37099977 [TBL] [Abstract][Full Text] [Related]
36. XPS and FTIR Studies of Polytetrafluoroethylene Thin Films Obtained by Physical Methods. Piwowarczyk J; Jędrzejewski R; Moszyński D; Kwiatkowski K; Niemczyk A; Baranowska J Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31600899 [TBL] [Abstract][Full Text] [Related]
38. Characterization of infrared matrix-assisted laser desorption ionization samples by Fourier transform infrared attenuated total reflection spectroscopy. Laboy JL; Murray KK Appl Spectrosc; 2004 Apr; 58(4):451-6. PubMed ID: 17140494 [TBL] [Abstract][Full Text] [Related]
39. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Dominguez G; Mcleod AS; Gainsforth Z; Kelly P; Bechtel HA; Keilmann F; Westphal A; Thiemens M; Basov DN Nat Commun; 2014 Dec; 5():5445. PubMed ID: 25487365 [TBL] [Abstract][Full Text] [Related]
40. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. Roman M; Wrobel TP; Paluszkiewicz C; Kwiatek WM J Biophotonics; 2020 May; 13(5):e201960094. PubMed ID: 31999078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]