These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37790447)

  • 1. Construction and reconfiguration of dynamic DNA origami assemblies with coiled-coil patches and patterns.
    Teng T; Bernal-Chanchavac J; Stephanopoulos N; Castro CE
    bioRxiv; 2023 Sep; ():. PubMed ID: 37790447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Reconfigurable and Polymorphic DNA Origami Assemblies with Coiled-Coil Patches and Patterns.
    Teng T; Bernal-Chanchavac J; Stephanopoulos N; Castro CE
    Adv Sci (Weinh); 2024 May; 11(20):e2307257. PubMed ID: 38459678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA origami tubes with reconfigurable cross-sections.
    Kucinic A; Huang CM; Wang J; Su HJ; Castro CE
    Nanoscale; 2023 Jan; 15(2):562-572. PubMed ID: 36520453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal Control of Hierarchical DNA Origami-Nanoparticle Assemblies.
    Johnson JA; Dehankar A; Winter JO; Castro CE
    Nano Lett; 2019 Dec; 19(12):8469-8475. PubMed ID: 31664841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Reconfigurable DNA Nanostructures, Networks and Materials.
    Wang J; Li Z; Willner I
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202215332. PubMed ID: 36651472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers.
    Lauback S; Mattioli KR; Marras AE; Armstrong M; Rudibaugh TP; Sooryakumar R; Castro CE
    Nat Commun; 2018 Apr; 9(1):1446. PubMed ID: 29654315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation-Activated Avidity for Rapid Reconfiguration of DNA Nanodevices.
    Marras AE; Shi Z; Lindell MG; Patton RA; Huang CM; Zhou L; Su HJ; Arya G; Castro CE
    ACS Nano; 2018 Sep; 12(9):9484-9494. PubMed ID: 30169013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Untethered control of functional origami microrobots with distributed actuation.
    Novelino LS; Ze Q; Wu S; Paulino GH; Zhao R
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24096-24101. PubMed ID: 32929033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Exciton Dynamics with Synthetic DNA Scaffolds.
    Hart SM; Gorman J; Bathe M; Schlau-Cohen GS
    Acc Chem Res; 2023 Aug; 56(15):2051-2061. PubMed ID: 37345736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Assembly of Nucleic Acid/Coiled-Coil Peptide Nanostructures.
    Buchberger A; Simmons CR; Fahmi NE; Freeman R; Stephanopoulos N
    J Am Chem Soc; 2020 Jan; 142(3):1406-1416. PubMed ID: 31820959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Activated Assembly of DNA Origami into Dissipative Fibrils.
    Berg WR; Berengut JF; Bai C; Wimberger L; Lee LK; Rizzuto FJ
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202314458. PubMed ID: 37903739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Reconfigurable DNA Origami Nanolattice Driven by the Combination of Orthogonal Signals.
    Watanabe K; Kawamata I; Murata S; Suzuki Y
    JACS Au; 2023 May; 3(5):1435-1442. PubMed ID: 37234113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gigadalton-scale shape-programmable DNA assemblies.
    Wagenbauer KF; Sigl C; Dietz H
    Nature; 2017 Dec; 552(7683):78-83. PubMed ID: 29219966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly.
    Tigges T; Heuser T; Tiwari R; Walther A
    Nano Lett; 2016 Dec; 16(12):7870-7874. PubMed ID: 27802042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfigurable DNA origami to generate quasifractal patterns.
    Zhang F; Nangreave J; Liu Y; Yan H
    Nano Lett; 2012 Jun; 12(6):3290-5. PubMed ID: 22559073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning curved DNA origami structures through mechanical design and chemical adducts.
    Xie C; Hu Y; Chen Z; Chen K; Pan L
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35772292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide Assembly Directed and Quantified Using Megadalton DNA Nanostructures.
    Jin J; Baker EG; Wood CW; Bath J; Woolfson DN; Turberfield AJ
    ACS Nano; 2019 Sep; 13(9):9927-9935. PubMed ID: 31381314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing a paper-folding mechanism for reconfigurable DNA origami.
    Kim M; Lee C; Jeon K; Lee JY; Kim YJ; Lee JG; Kim H; Cho M; Kim DN
    Nature; 2023 Jul; 619(7968):78-86. PubMed ID: 37407684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart Actuators and Adhesives for Reconfigurable Matter.
    Ko H; Javey A
    Acc Chem Res; 2017 Apr; 50(4):691-702. PubMed ID: 28263544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.