BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37790449)

  • 1. Synthetic control of actin polymerization and symmetry breaking in active protocells.
    Razavi S; Wong F; Abubaker-Sharif B; Matsubayashi HT; Nakamura H; Sandoval E; Robinson DN; Chen B; Liu J; Iglesias PA; Inoue T
    bioRxiv; 2023 Sep; ():. PubMed ID: 37790449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic control of actin polymerization and symmetry breaking in active protocells.
    Razavi S; Wong F; Abubaker-Sharif B; Matsubayashi HT; Nakamura H; Nguyen NTH; Robinson DN; Chen B; Iglesias PA; Inoue T
    Sci Adv; 2024 Jun; 10(24):eadk9731. PubMed ID: 38865458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Control of Arp2/3-Induced Actin Polymerization on Phase-Separated Giant Unilamellar Vesicles.
    Lopes Dos Santos R; Malo M; Campillo C
    ACS Synth Biol; 2023 Nov; 12(11):3267-3274. PubMed ID: 37909673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking.
    Carvalho K; Lemière J; Faqir F; Manzi J; Blanchoin L; Plastino J; Betz T; Sykes C
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1629):20130005. PubMed ID: 24062578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying actin-induced cell shape changes using Giant Unilamellar Vesicles and reconstituted actin networks.
    Lopes Dos Santos R; Campillo C
    Biochem Soc Trans; 2022 Oct; 50(5):1527-1539. PubMed ID: 36111807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry breaking in reconstituted actin cortices.
    Abu Shah E; Keren K
    Elife; 2014 Apr; 3():e01433. PubMed ID: 24843007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confinement Geometry Tunes Fascin-Actin Bundle Structures and Consequently the Shape of a Lipid Bilayer Vesicle.
    Bashirzadeh Y; Wubshet NH; Liu AP
    Front Mol Biosci; 2020; 7():610277. PubMed ID: 33240934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Reconstitution Inside Giant Unilamellar Vesicles.
    Litschel T; Schwille P
    Annu Rev Biophys; 2021 May; 50():525-548. PubMed ID: 33667121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the physics underlying symmetry breaking of the actin cytoskeleton: An artificial cell-based approach.
    Sakamoto R; Maeda YT
    Biophys Physicobiol; 2023; 20(3):e200032. PubMed ID: 38124798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of a Minimal Actin Cortex by Coupling Actin Filaments to Reconstituted Membranes.
    Vogel SK
    Methods Mol Biol; 2016; 1365():213-23. PubMed ID: 26498787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico reconstitution of actin-based symmetry breaking and motility.
    Dayel MJ; Akin O; Landeryou M; Risca V; Mogilner A; Mullins RD
    PLoS Biol; 2009 Sep; 7(9):e1000201. PubMed ID: 19771152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing polymerization forces by using actin-propelled lipid vesicles.
    Upadhyaya A; Chabot JR; Andreeva A; Samadani A; van Oudenaarden A
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4521-6. PubMed ID: 12657740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rearrangement of GUV-confined actin networks in response to micropipette aspiration.
    Wubshet NH; Young CJ; Liu AP
    Cytoskeleton (Hoboken); 2024 Feb; ():. PubMed ID: 38326972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capping protein-controlled actin polymerization shapes lipid membranes.
    Dürre K; Keber FC; Bleicher P; Brauns F; Cyron CJ; Faix J; Bausch AR
    Nat Commun; 2018 Apr; 9(1):1630. PubMed ID: 29691404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of proteins on electroformed giant unilamellar vesicles.
    Schmid EM; Richmond DL; Fletcher DA
    Methods Cell Biol; 2015; 128():319-38. PubMed ID: 25997355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branched actin cortices reconstituted in vesicles sense membrane curvature.
    Baldauf L; Frey F; Arribas Perez M; Idema T; Koenderink GH
    Biophys J; 2023 Jun; 122(11):2311-2324. PubMed ID: 36806830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular Cues Govern Shape and Cytoskeletal Organization in Giant Unilamellar Lipid Vesicles.
    Fink A; Doll CR; Yagüe Relimpio A; Dreher Y; Spatz JP; Göpfrich K; Cavalcanti-Adam EA
    ACS Synth Biol; 2023 Feb; 12(2):369-374. PubMed ID: 36652603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active particles induce large shape deformations in giant lipid vesicles.
    Vutukuri HR; Hoore M; Abaurrea-Velasco C; van Buren L; Dutto A; Auth T; Fedosov DA; Gompper G; Vermant J
    Nature; 2020 Oct; 586(7827):52-56. PubMed ID: 32999485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.