These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Deep mutational scanning and machine learning for the analysis of antimicrobial-peptide features driving membrane selectivity. Randall JR; Vieira LC; Wilke CO; Davies BW Nat Biomed Eng; 2024 Jul; 8(7):842-853. PubMed ID: 39085646 [TBL] [Abstract][Full Text] [Related]
4. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Harwig SS; Waring A; Yang HJ; Cho Y; Tan L; Lehrer RI Eur J Biochem; 1996 Sep; 240(2):352-7. PubMed ID: 8841398 [TBL] [Abstract][Full Text] [Related]
5. In vitro system for high-throughput screening of random peptide libraries for antimicrobial peptides that recognize bacterial membranes. Xie Q; Matsunaga S; Wen Z; Niimi S; Kumano M; Sakakibara Y; Machida S J Pept Sci; 2006 Oct; 12(10):643-52. PubMed ID: 16878349 [TBL] [Abstract][Full Text] [Related]
6. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy. Mani R; Waring AJ; Hong M Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158 [TBL] [Abstract][Full Text] [Related]
7. Establishing Quantifiable Guidelines for Antimicrobial α/β-Peptide Design: A Partial Least-Squares Approach to Improve Antimicrobial Activity and Reduce Mammalian Cell Toxicity. Chang DH; Lee MR; Wang N; Lynn DM; Palecek SP ACS Infect Dis; 2023 Dec; 9(12):2632-2651. PubMed ID: 38014670 [TBL] [Abstract][Full Text] [Related]
9. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Su Y; Waring AJ; Ruchala P; Hong M Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955 [TBL] [Abstract][Full Text] [Related]
10. Development of protegrins for the treatment and prevention of oral mucositis: structure-activity relationships of synthetic protegrin analogues. Chen J; Falla TJ; Liu H; Hurst MA; Fujii CA; Mosca DA; Embree JR; Loury DJ; Radel PA; Cheng Chang C; Gu L; Fiddes JC Biopolymers; 2000; 55(1):88-98. PubMed ID: 10931444 [TBL] [Abstract][Full Text] [Related]
11. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide. Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217 [TBL] [Abstract][Full Text] [Related]
13. Using fluorous amino acids to probe the effects of changing hydrophobicity on the physical and biological properties of the beta-hairpin antimicrobial peptide protegrin-1. Gottler LM; de la Salud Bea R; Shelburne CE; Ramamoorthy A; Marsh EN Biochemistry; 2008 Sep; 47(35):9243-50. PubMed ID: 18693751 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-enabled discovery and design of membrane-active peptides. Lee EY; Wong GCL; Ferguson AL Bioorg Med Chem; 2018 Jun; 26(10):2708-2718. PubMed ID: 28728899 [TBL] [Abstract][Full Text] [Related]
15. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Wang P; Bang JK; Kim HJ; Kim JK; Kim Y; Shin SY Peptides; 2009 Dec; 30(12):2144-9. PubMed ID: 19778562 [TBL] [Abstract][Full Text] [Related]
17. Membranolytic selectivity of cystine-stabilized cyclic protegrins. Tam JP; Wu C; Yang JL Eur J Biochem; 2000 Jun; 267(11):3289-300. PubMed ID: 10824115 [TBL] [Abstract][Full Text] [Related]