These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 37790779)
1. High-throughput and separating-free phenotyping method for on-panicle rice grains based on deep learning. Lu Y; Wang J; Fu L; Yu L; Liu Q Front Plant Sci; 2023; 14():1219584. PubMed ID: 37790779 [TBL] [Abstract][Full Text] [Related]
2. A High-Throughput Method for Accurate Extraction of Intact Rice Panicle Traits. Sun J; Ren Z; Cui J; Tang C; Luo T; Yang W; Song P Plant Phenomics; 2024; 6():0213. PubMed ID: 39091338 [TBL] [Abstract][Full Text] [Related]
3. Image analysis-based recognition and quantification of grain number per panicle in rice. Wu W; Liu T; Zhou P; Yang T; Li C; Zhong X; Sun C; Liu S; Guo W Plant Methods; 2019; 15():122. PubMed ID: 31695727 [TBL] [Abstract][Full Text] [Related]
4. Automated Counting Grains on the Rice Panicle Based on Deep Learning Method. Deng R; Tao M; Huang X; Bangura K; Jiang Q; Jiang Y; Qi L Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406615 [TBL] [Abstract][Full Text] [Related]
5. PI-Plat: a high-resolution image-based 3D reconstruction method to estimate growth dynamics of rice inflorescence traits. Sandhu J; Zhu F; Paul P; Gao T; Dhatt BK; Ge Y; Staswick P; Yu H; Walia H Plant Methods; 2019; 15():162. PubMed ID: 31889986 [TBL] [Abstract][Full Text] [Related]
6. P-TRAP: a Panicle TRAit Phenotyping tool. A L-Tam F; Adam H; Anjos Ad; Lorieux M; Larmande P; Ghesquière A; Jouannic S; Shahbazkia HR BMC Plant Biol; 2013 Aug; 13():122. PubMed ID: 23987653 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Erect-Panicle Japonica Rice in Northern China: Yield, Quality Status, and Quality Improvement Directions. Yan B; Jiang X; Xu Z; Chen W; Cheng X; Xu H Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611456 [TBL] [Abstract][Full Text] [Related]
8. Mask R-CNN-based feature extraction and three-dimensional recognition of rice panicle CT images. Kong H; Chen P Plant Direct; 2021 May; 5(5):e00323. PubMed ID: 33981945 [TBL] [Abstract][Full Text] [Related]
9. [Effects of elevated CO Hu SW; Zhang X; Jing LQ; Lai SK; Wang YX; Zhu JG; Wang YL; Yang LX Ying Yong Sheng Tai Xue Bao; 2019 Nov; 30(11):3725-3734. PubMed ID: 31833685 [TBL] [Abstract][Full Text] [Related]
10. An Intelligent Rice Yield Trait Evaluation System Based on Threshed Panicle Compensation. Huang C; Li W; Zhang Z; Hua X; Yang J; Ye J; Duan L; Liang X; Yang W Front Plant Sci; 2022; 13():900408. PubMed ID: 35937323 [TBL] [Abstract][Full Text] [Related]
11. Leaf to panicle ratio (LPR): a new physiological trait indicative of source and sink relation in japonica rice based on deep learning. Yang Z; Gao S; Xiao F; Li G; Ding Y; Guo Q; Paul MJ; Liu Z Plant Methods; 2020; 16():117. PubMed ID: 32863854 [TBL] [Abstract][Full Text] [Related]
12. First report of bacterial panicle blight (BPB) in Rice caused by Islam MR; Jannat R; Protic IA; Happy MNA; Samin SI; Mita MM; Bashar S; Masud MM; Islam H; Uddin MN; Akter MA; Alam MZ Plant Dis; 2023 May; ():. PubMed ID: 37221243 [TBL] [Abstract][Full Text] [Related]
13. Genetic variability of panicle architecture in indigenous rice landraces of Koraput region of Eastern Ghats of India for crop improvement. Panda D; Sahu N; Behera PK; Lenka K Physiol Mol Biol Plants; 2020 Oct; 26(10):1961-1971. PubMed ID: 33088042 [TBL] [Abstract][Full Text] [Related]
14. Identification of Newer Stable Genetic Sources for High Grain Number per Panicle and Understanding the Gene Action for Important Panicle Traits in Rice. Gunasekaran A; Seshadri G; Ramasamy S; Muthurajan R; Karuppasamy KS Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36678963 [TBL] [Abstract][Full Text] [Related]
15. Genotypic and Phenotypic Relationship among Yield Components in Rice under Tropical Conditions. Oladosu Y; Rafii MY; Magaji U; Abdullah N; Miah G; Chukwu SC; Hussin G; Ramli A; Kareem I Biomed Res Int; 2018; 2018():8936767. PubMed ID: 30105259 [TBL] [Abstract][Full Text] [Related]
16. Nondestructive 3D Image Analysis Pipeline to Extract Rice Grain Traits Using X-Ray Computed Tomography. Hu W; Zhang C; Jiang Y; Huang C; Liu Q; Xiong L; Yang W; Chen F Plant Phenomics; 2020; 2020():3414926. PubMed ID: 33313550 [TBL] [Abstract][Full Text] [Related]
17. Application of Open Panicle Traits in Improving the Filling Characteristics at the Base of Yang G; Wang Q; Yang G; Zhang G; Chen H; Wang X; Ma P; Hu Y Plants (Basel); 2024 Jul; 13(15):. PubMed ID: 39124153 [TBL] [Abstract][Full Text] [Related]
18. High-throughput UAV-based rice panicle detection and genetic mapping of heading-date-related traits. Chen R; Lu H; Wang Y; Tian Q; Zhou C; Wang A; Feng Q; Gong S; Zhao Q; Han B Front Plant Sci; 2024; 15():1327507. PubMed ID: 38562563 [TBL] [Abstract][Full Text] [Related]
19. Genome-Wide Association Mapping for Yield and Yield-Related Traits in Rice ( Ashfaq M; Rasheed A; Zhu R; Ali M; Javed MA; Anwar A; Tabassum J; Shaheen S; Wu X Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239449 [TBL] [Abstract][Full Text] [Related]
20. Automatic estimation of rice grain number based on a convolutional neural network. Deng R; Qi L; Pan W; Wang Z; Fu D; Yang X J Opt Soc Am A Opt Image Sci Vis; 2022 Jun; 39(6):1034-1044. PubMed ID: 36215533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]