These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37790804)

  • 1. Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.
    Zhang J; Lin J; Peddinti V; Gregg RD
    Proc Am Control Conf; 2023; 2023():2065-2070. PubMed ID: 37790804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimally Biomimetic Passivity-Based Control of a Lower-Limb Exoskeleton Over the Primary Activities of Daily Life.
    Lin J; Divekar NV; Thomas GC; Gregg RD
    IEEE Open J Control Syst; 2022; 1():15-28. PubMed ID: 35673605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Energetic Approach to Task-Invariant Ankle Exoskeleton Control.
    Walters K; Thomas GC; Lin J; Gregg RD
    Rep U S; 2023 Oct; 2023():6082-6089. PubMed ID: 38130334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
    Nesler C; Thomas G; Divekar N; Rouse EJ; Gregg RD
    IEEE Robot Autom Lett; 2022 Jul; 7(3):6155-6162. PubMed ID: 36051565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
    Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulating and Deploying Strength Amplification Controllers for Lower-Body Walking Exoskeletons.
    Thomas GC; Campbell O; Nichols N; Brissonneau N; He B; James J; Paine N; Sentis L
    Front Robot AI; 2021; 8():720231. PubMed ID: 34646867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closing the Loop on Exoskeleton Motor Controllers: Benefits of Regression-Based Open-Loop Control.
    Orekhov G; Luque J; Lerner ZF
    IEEE Robot Autom Lett; 2020 Oct; 5(4):6025-6032. PubMed ID: 33748415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of controllers for augmentative hip exoskeletons and their effects on metabolic cost of walking: explicit versus implicit synchronization.
    Manzoori AR; Malatesta D; Primavesi J; Ijspeert A; Bouri M
    Front Bioeng Biotechnol; 2024; 12():1324587. PubMed ID: 38532879
    [No Abstract]   [Full Text] [Related]  

  • 10. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study.
    Shafer BA; Philius SA; Nuckols RW; McCall J; Young AJ; Sawicki GS
    Front Bioeng Biotechnol; 2021; 9():615358. PubMed ID: 33954159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.
    Young AJ; Gannon H; Ferris DP
    Front Bioeng Biotechnol; 2017; 5():37. PubMed ID: 28713810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
    Chang CH; Casas J; Brose SW; Duenas VH
    Front Robot AI; 2021; 8():702860. PubMed ID: 35127833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and Stiffness-based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance.
    Huang TH; Zhang S; Yu S; MacLean MK; Zhu J; Lallo AD; Jiao C; Bulea TC; Zheng M; Su H
    IEEE Trans Robot; 2022 Jun; 38(3):1442-1459. PubMed ID: 36338603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton.
    Zhou X; Chen X
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankle exoskeleton torque controllers based on soleus muscle models.
    Pridham PS; Stirling L
    PLoS One; 2023; 18(2):e0281944. PubMed ID: 36848340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury.
    Wu AR; Dzeladini F; Brug TJH; Tamburella F; Tagliamonte NL; van Asseldonk EHF; van der Kooij H; Ijspeert AJ
    Front Neurorobot; 2017; 11():30. PubMed ID: 28676752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.