These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37791098)

  • 1. Computational Study of the Solid-State Incorporation of Sn(II) Acetate into Zeolite β.
    Beynon OT; Owens A; Tarantino G; Hammond C; Logsdail AJ
    J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):19072-19087. PubMed ID: 37791098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multisite molecular mechanism for Baeyer-Villiger oxidations on solid catalysts using environmentally friendly H2O2 as oxidant.
    Boronat M; Corma A; Renz M; Sastre G; Viruela PM
    Chemistry; 2005 Nov; 11(23):6905-15. PubMed ID: 16163761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. gem-Diol-Type Intermediate in the Activation of a Ketone on Sn-β Zeolite as Studied by Solid-State NMR Spectroscopy.
    Qi G; Chu Y; Wang Q; Wang X; Li Y; Trébosc J; Lafon O; Xu J; Deng F
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19532-19538. PubMed ID: 32449837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Active and Spectator Sn Sites in Sn-β Following Solid-State Stannation, and Consequences for Lewis Acid Catalysis.
    Hammond C; Padovan D; Al-Nayili A; Wells PP; Gibson EK; Dimitratos N
    ChemCatChem; 2015 Oct; 7(20):3322-3331. PubMed ID: 26583051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites.
    Wolf P; Hammond C; Conrad S; Hermans I
    Dalton Trans; 2014 Mar; 43(11):4514-9. PubMed ID: 24407516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenol Tautomerization Catalyzed by Acid-Base Pairs in Lewis Acidic Beta Zeolites: A Computational Study.
    Deepankeaw N; Maihom T; Probst M; Prasertsab A; Homlamai K; Sittiwong J; Limtrakul J
    Chemphyschem; 2019 Aug; 20(16):2122-2126. PubMed ID: 31237987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds.
    Rodríguez-Fernández A; Di Iorio JR; Paris C; Boronat M; Corma A; Román-Leshkov Y; Moliner M
    Chem Sci; 2020 Sep; 11(37):10225-10235. PubMed ID: 34094288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of CO
    Thongnuam W; Maihom T; Choomwattana S; Injongkol Y; Boekfa B; Treesukol P; Limtrakul J
    Phys Chem Chem Phys; 2018 Oct; 20(39):25179-25185. PubMed ID: 29992213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic Trends in Olefin Epoxidation over Group IV and V Framework-Substituted Zeolite Catalysts: A Kinetic and Spectroscopic Study.
    Bregante DT; Flaherty DW
    J Am Chem Soc; 2017 May; 139(20):6888-6898. PubMed ID: 28453262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Furfural to Furfuryl Alcohol: Computational Study of the Hydrogen Transfer on Lewis Acidic BEA Zeolites and Effects of Cation Exchange and Tetravalent Metal Substitution.
    Prasertsab A; Maihom T; Probst M; Wattanakit C; Limtrakul J
    Inorg Chem; 2018 Jun; 57(11):6599-6605. PubMed ID: 29767963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts.
    Boronat M; Corma A; Renz M
    J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis strategies to control the Al distribution in zeolites: thermodynamic and kinetic aspects.
    Bae J; Dusselier M
    Chem Commun (Camb); 2023 Jan; 59(7):852-867. PubMed ID: 36598011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethane Ammoxidation over Sn/H-Zeolite Catalysts: Toward the Factors Contributing to the Yield of Acetonitrile.
    Liu Y; Li T; Qiao S; Heng Z; Zhao T; Wu H; Xiong T; Li J; Yao X; Long L; Xiang Y; Liu Q; Lu L; Liang T; Chen J; Jin F
    ACS Appl Mater Interfaces; 2023 May; 15(21):25604-25614. PubMed ID: 37192272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy.
    Xu J; Wang Q; Deng F
    Acc Chem Res; 2019 Aug; 52(8):2179-2189. PubMed ID: 31063347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-Temperature Activation of the C-H Bond in Methane over Terminal Zn
    Oda A; Ohkubo T; Yumura T; Kobayashi H; Kuroda Y
    Inorg Chem; 2019 Jan; 58(1):327-338. PubMed ID: 30495931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Strategy for the Simultaneous Synthesis of Methallyl Alcohol and Diethyl Acetal with Sn-β.
    Hu W; Wan Y; Zhu L; Cheng X; Wan S; Lin J; Wang Y
    ChemSusChem; 2017 Dec; 10(23):4715-4724. PubMed ID: 28926196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Reactions on Pd-Au Bimetallic Model Catalysts.
    Han S; Mullins CB
    Acc Chem Res; 2021 Jan; 54(2):379-387. PubMed ID: 33371669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and mechanistic investigations of dioxygen reduction by a molecular Cu(II) catalyst bearing a pentadentate amidate ligand.
    Chowdhury SN; Biswas S; Das S; Biswas AN
    Dalton Trans; 2023 Aug; 52(33):11581-11590. PubMed ID: 37548356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.