These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37791254)

  • 1. Neural network-based inverse model for diffuse reflectance spectroscopy.
    Lan Q; McClarren RG; Vishwanath K
    Biomed Opt Express; 2023 Sep; 14(9):4725-4738. PubMed ID: 37791254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on the Determination System of Tissue Optical Properties Based on Diffuse Reflectance Spectrum].
    Li CX; Sun Z; Han L; Zhao HJ; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1532-6. PubMed ID: 30001058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling spatially-resolved diffuse reflectance spectra of a multi-layered skin model by artificial neural networks trained with Monte Carlo simulations.
    Tsui SY; Wang CY; Huang TH; Sung KB
    Biomed Opt Express; 2018 Apr; 9(4):1531-1544. PubMed ID: 29675300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy.
    Hennessy R; Lim SL; Markey MK; Tunnell JW
    J Biomed Opt; 2013 Mar; 18(3):037003. PubMed ID: 23455965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy.
    Sharma M; Hennessy R; Markey MK; Tunnell JW
    Biomed Opt Express; 2013 Dec; 5(1):40-53. PubMed ID: 24466475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models.
    Kao TC; Sung KB
    J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient estimation of subdiffusive optical parameters in real time from spatially resolved reflectance by artificial neural networks.
    Ivančič M; Naglič P; Pernuš F; Likar B; Bürmen M
    Opt Lett; 2018 Jun; 43(12):2901-2904. PubMed ID: 29905719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network-based optimization of sub-diffuse reflectance spectroscopy for improved parameter prediction and efficient data collection.
    An J; Zhang Q; Zhang L; Liu C; Liu D; Jia M; Gao F
    J Biophotonics; 2023 May; 16(5):e202200375. PubMed ID: 36740724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved accuracy in time-resolved diffuse reflectance spectroscopy.
    Alerstam E; Andersson-Engels S; Svensson T
    Opt Express; 2008 Jul; 16(14):10440-54. PubMed ID: 18607457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological model using diffuse reflectance spectroscopy for nonmelanoma skin cancer diagnosis.
    Zhang Y; Moy AJ; Feng X; Nguyen HTM; Reichenberg JS; Markey MK; Tunnell JW
    J Biophotonics; 2019 Dec; 12(12):e201900154. PubMed ID: 31325232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing a use-error robust machine learning model for quantitative analysis of diffuse reflectance spectra.
    Scarbrough A; Chen K; Yu B
    J Biomed Opt; 2024 Jan; 29(1):015001. PubMed ID: 38213471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue.
    Kienle A; Lilge L; Patterson MS; Hibst R; Steiner R; Wilson BC
    Appl Opt; 1996 May; 35(13):2304-14. PubMed ID: 21085367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments.
    Zhong X; Wen X; Zhu D
    Opt Express; 2014 Jan; 22(2):1852-64. PubMed ID: 24515194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of optical properties by spatially resolved reflectance spectroscopy in the subdiffusive regime.
    Naglic P; Pernuš F; Likar B; Bürmen M
    J Biomed Opt; 2016 Sep; 21(9):95003. PubMed ID: 27653934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy.
    Nichols BS; Rajaram N; Tunnell JW
    J Biomed Opt; 2012 May; 17(5):057001. PubMed ID: 22612140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid modeling of diffuse reflectance of light in turbid slabs.
    Wang LV
    J Opt Soc Am A Opt Image Sci Vis; 1998 Apr; 15(4):936-44. PubMed ID: 9536515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photometric and Monte-Carlo modeling unified approach for the calculation of spatially-resolved correction coefficients linking simulated and experimental diffuse reflectance spectra.
    Colas V; Amouroux M; Perrin-Mozet C; Daul C; Blondel W
    Opt Express; 2023 Jul; 31(16):25954-25969. PubMed ID: 37710468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.
    Muñoz Morales AA; Vázquez Y Montiel S
    Biomed Opt Express; 2012 Oct; 3(10):2395-404. PubMed ID: 23082281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin-based phantoms and Monte Carlo experiments.
    Bahl A; Segaud S; Xie Y; Shapey J; Bergholt MS; Vercauteren T
    J Biophotonics; 2024 Jun; 17(6):e202300536. PubMed ID: 38616109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.