These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37791268)

  • 21. Three-Dimensional Optical Coherence Tomography Imaging For Glaucoma Associated With Boston Keratoprosthesis Type I and II.
    Khoueir Z; Jassim F; Braaf B; Poon LY; Tsikata E; Chodosh J; Dohlman CH; Vakoc BJ; Bouma BE; de Boer JF; Chen TC
    J Glaucoma; 2019 Aug; 28(8):718-726. PubMed ID: 31169563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of peripapillary capillary plexus using optical coherence tomography angiography and retinal nerve fibre layer analysis using spectral domain optical coherence tomography in glaucoma patients, glaucoma suspects, and healthy subjects.
    Dutta A; Thulasidas M; Sasidharan A; Pradeep B; Rajesh Prabu V
    Indian J Ophthalmol; 2022 Dec; 70(12):4146-4151. PubMed ID: 36453303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical Coherence Tomography in the UK Biobank Study - Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies.
    Keane PA; Grossi CM; Foster PJ; Yang Q; Reisman CA; Chan K; Peto T; Thomas D; Patel PJ;
    PLoS One; 2016; 11(10):e0164095. PubMed ID: 27716837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. REAL-TIME FULL-DEPTH VISUALIZATION OF POSTERIOR OCULAR STRUCTURES: Comparison Between Full-Depth Imaging Spectral Domain Optical Coherence Tomography and Swept-Source Optical Coherence Tomography.
    Barteselli G; Bartsch DU; Weinreb RN; Camacho N; Nezgoda JT; Marvasti AH; Freeman WR
    Retina; 2016 Jun; 36(6):1153-61. PubMed ID: 26562563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Learning-Based Retinal Nerve Fiber Layer Thickness Measurement of Murine Eyes.
    Ma R; Liu Y; Tao Y; Alawa KA; Shyu ML; Lee RK
    Transl Vis Sci Technol; 2021 Jul; 10(8):21. PubMed ID: 34297789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
    Thompson AC; Jammal AA; Berchuck SI; Mariottoni EB; Medeiros FA
    JAMA Ophthalmol; 2020 Apr; 138(4):333-339. PubMed ID: 32053142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples.
    Razani M; Luk TW; Mariampillai A; Siegler P; Kiehl TR; Kolios MC; Yang VX
    Biomed Opt Express; 2014 Mar; 5(3):895-906. PubMed ID: 24688822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography.
    Unterlauft JD; Rehak M; Böhm MRR; Rauscher FG
    PLoS One; 2018; 13(12):e0209610. PubMed ID: 30596720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ability of macular parameters and circumpapillary retinal nerve fiber layer by three SD-OCT instruments to diagnose highly myopic glaucoma.
    Akashi A; Kanamori A; Nakamura M; Fujihara M; Yamada Y; Negi A
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6025-32. PubMed ID: 23908182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography.
    Kotera Y; Hangai M; Hirose F; Mori S; Yoshimura N
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1412-21. PubMed ID: 21087959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thickness mapping of the inner retina by spectral-domain optical coherence tomography in an N-methyl-D-aspartate-induced retinal damage model.
    Ohno Y; Makita S; Shimazawa M; Tsuruma K; Yasuno Y; Hara H
    Exp Eye Res; 2013 Aug; 113():19-25. PubMed ID: 23707241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography.
    Sakamoto A; Hangai M; Nukada M; Nakanishi H; Mori S; Kotera Y; Inoue R; Yoshimura N
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5062-70. PubMed ID: 20463326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel segmentation algorithm for high-throughput analysis of spectral domain-optical coherence tomography imaging of teleost retinas.
    Barter KR; Paradis H; Gendron RL; Vidal JAL; Meruvia-Pastor O
    Mol Vis; 2022; 28():492-499. PubMed ID: 37089699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning for Glaucoma Detection and Identification of Novel Diagnostic Areas in Diverse Real-World Datasets.
    Noury E; Mannil SS; Chang RT; Ran AR; Cheung CY; Thapa SS; Rao HL; Dasari S; Riyazuddin M; Chang D; Nagaraj S; Tham CC; Zadeh R
    Transl Vis Sci Technol; 2022 May; 11(5):11. PubMed ID: 35551345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma.
    Akashi A; Kanamori A; Nakamura M; Fujihara M; Yamada Y; Negi A
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4478-84. PubMed ID: 23737470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redefining the limit of the outer retina in optical coherence tomography scans.
    Pons ME; Garcia-Valenzuela E
    Ophthalmology; 2005 Jun; 112(6):1079-85. PubMed ID: 15882904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.
    Srinivasan VJ; Adler DC; Chen Y; Gorczynska I; Huber R; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):5103-10. PubMed ID: 18658089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction.
    Cheng J; Tao D; Quan Y; Wong DW; Cheung GC; Akiba M; Liu J
    IEEE Trans Med Imaging; 2016 Oct; 35(10):2270-2279. PubMed ID: 27116734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of Topcon 3D optical coherence tomography-2000 in re-analyzing OCT-1000 raw data.
    Chen B; Chen H; Zheng C; Zhang M
    Exp Ther Med; 2019 Jun; 17(6):4395-4402. PubMed ID: 31086574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo imaging of the mouse retina using high-resolution optical coherence tomography.
    Machalińska A; Lejkowska R; Duchnik M; Rogińska D; Kawa M; Wiszniewska B
    Klin Oczna; 2014; 116(1):11-5. PubMed ID: 25137914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.