These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37791277)

  • 1. Assessing depth sensitivity in laser interferometry speckle visibility spectroscopy (iSVS) through source-to-detector distance variation and cerebral blood flow monitoring in humans and rabbits.
    Mahler S; Huang YX; Liang M; Avalos A; Tyszka JM; Mertz J; Yang C
    Biomed Opt Express; 2023 Sep; 14(9):4964-4978. PubMed ID: 37791277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compact and cost-effective laser-powered speckle visibility spectroscopy (SVS) device for measuring cerebral blood flow.
    Huang YX; Mahler S; Dickson M; Abedi A; Tyszka JM; Lo YT; Russin J; Liu C; Yang C
    ArXiv; 2024 Feb; ():. PubMed ID: 38351942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries.
    Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA
    Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact and cost-effective laser-powered speckle contrast optical spectroscopy fiber-free device for measuring cerebral blood flow.
    Huang YX; Mahler S; Dickson M; Abedi A; Tyszka JM; Lo YT; Russin J; Liu C; Yang C
    J Biomed Opt; 2024 Jun; 29(6):067001. PubMed ID: 38826808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wearable Fiberless Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Mice.
    Huang C; Gu Y; Chen J; Bahrani AA; Abu Jawdeh EG; Bada HS; Saatman K; Yu G; Chen L
    IEEE J Sel Top Quantum Electron; 2019; 25(1):. PubMed ID: 31666792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interferometric speckle visibility spectroscopy (iSVS) for measuring decorrelation time and dynamics of moving samples with enhanced signal-to-noise ratio and relaxed reference requirements.
    Huang YX; Mahler S; Mertz J; Yang C
    Opt Express; 2023 Sep; 31(19):31253-31266. PubMed ID: 37710649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-exposure interferometric diffusing wave spectroscopy.
    Zhou W; Zhao M; Kholiqov O; Srinivasan VJ
    Opt Lett; 2021 Sep; 46(18):4498-4501. PubMed ID: 34525031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Invasive Continuous Optical Monitoring of Cerebral Blood Flow after Traumatic Brain Injury in Mice Using Fiber Camera-Based Speckle Contrast Optical Spectroscopy.
    Langri DS; Sunar U
    Brain Sci; 2023 Sep; 13(10):. PubMed ID: 37891734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly parallel, interferometric diffusing wave spectroscopy for monitoring cerebral blood flow dynamics.
    Zhou W; Kholiqov O; Chong SP; Srinivasan VJ
    Optica; 2018; 5(5):518-527. PubMed ID: 30417035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [In vivo measurement of ocular circulation with the laser speckle method--development of apparatus and application in ophthalmological research].
    Araie M
    Nippon Ganka Gakkai Zasshi; 1999 Dec; 103(12):871-909. PubMed ID: 10643292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of skin blood flow and source-detector distance on near-infrared spectroscopy-determined cerebral oxygenation in humans.
    Hirasawa A; Yanagisawa S; Tanaka N; Funane T; Kiguchi M; Sørensen H; Secher NH; Ogoh S
    Clin Physiol Funct Imaging; 2015 May; 35(3):237-44. PubMed ID: 24750947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-mode fiber-based speckle contrast optical spectroscopy: analysis of speckle statistics.
    Lin CP; Orukari I; Tracy C; Frisk LK; Verma M; Chetia S; Durduran T; Trobaugh JW; Culver JP
    Opt Lett; 2023 Mar; 48(6):1427-1430. PubMed ID: 36946944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue.
    Valdes CP; Varma HM; Kristoffersen AK; Dragojevic T; Culver JP; Durduran T
    Biomed Opt Express; 2014 Aug; 5(8):2769-84. PubMed ID: 25136500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin.
    Kolyva C; Ghosh A; Tachtsidis I; Highton D; Cooper CE; Smith M; Elwell CE
    Neuroimage; 2014 Jan; 85 Pt 1(Pt 1):234-44. PubMed ID: 23707584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable, high speed blood flow measurements enabled by long wavelength, interferometric diffuse correlation spectroscopy (LW-iDCS).
    Robinson MB; Renna M; Ozana N; Martin AN; Otic N; Carp SA; Franceschini MA
    Sci Rep; 2023 May; 13(1):8803. PubMed ID: 37258644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of oversimplifying the head anatomy on cerebral blood flow measurements with diffuse correlation spectroscopy.
    Zhao H; Buckley EM
    Neurophotonics; 2023 Jan; 10(1):015010. PubMed ID: 37006324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penetration Profiles of Visible and Near-Infrared Lasers and Light-Emitting Diode Light Through the Head Tissues in Animal and Human Species: A Review of Literature.
    Salehpour F; Cassano P; Rouhi N; Hamblin MR; De Taboada L; Farajdokht F; Mahmoudi J
    Photobiomodul Photomed Laser Surg; 2019 Oct; 37(10):581-595. PubMed ID: 31553265
    [No Abstract]   [Full Text] [Related]  

  • 18. Assessment of subchondral bone blood flow in the rabbit femoral condyle using the laser speckle method.
    Fukuoka S; Hotokebuchi T; Terada K; Kobara N; Fujii H; Sugioka Y; Iwamoto Y
    J Orthop Res; 1999 May; 17(3):368-75. PubMed ID: 10376725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate contrast determination for X-ray speckle visibility spectroscopy.
    Sun Y; Montana-Lopez J; Fuoss P; Sutton M; Zhu D
    J Synchrotron Radiat; 2020 Jul; 27(Pt 4):999-1007. PubMed ID: 33566009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.
    Funane T; Atsumori H; Katura T; Obata AN; Sato H; Tanikawa Y; Okada E; Kiguchi M
    Neuroimage; 2014 Jan; 85 Pt 1():150-65. PubMed ID: 23439443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.