These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37792146)
1. An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Marasco A; Spera E; De Falco V; Iuorio A; Lupascu CA; Solinas S; Migliore M Bull Math Biol; 2023 Oct; 85(11):109. PubMed ID: 37792146 [TBL] [Abstract][Full Text] [Related]
2. Mathematical generation of data-driven hippocampal CA1 pyramidal neurons and interneurons copies via A-GLIF models for large-scale networks covering the experimental variability range. Marasco A; Tribuzi C; Iuorio A; Migliore M Math Biosci; 2024 May; 371():109179. PubMed ID: 38521453 [TBL] [Abstract][Full Text] [Related]
3. Modeling realistic synaptic inputs of CA1 hippocampal pyramidal neurons and interneurons via Adaptive Generalized Leaky Integrate-and-Fire models. Marasco A; Tribuzi C; Lupascu CA; Migliore M Math Biosci; 2024 Jun; 372():109192. PubMed ID: 38640998 [TBL] [Abstract][Full Text] [Related]
4. A neuromimetic realization of hippocampal CA1 for theta wave generation. Salimi-Nezhad N; Hasanlou M; Amiri M; Keliris GA Neural Netw; 2021 Oct; 142():548-563. PubMed ID: 34340189 [TBL] [Abstract][Full Text] [Related]
5. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm. Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395 [TBL] [Abstract][Full Text] [Related]
6. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise. Hertäg L; Durstewitz D; Brunel N Front Comput Neurosci; 2014; 8():116. PubMed ID: 25278872 [TBL] [Abstract][Full Text] [Related]
7. Phase relations of interneuronal activity relative to theta rhythm. Mysin I Front Neural Circuits; 2023; 17():1198573. PubMed ID: 37484208 [TBL] [Abstract][Full Text] [Related]
8. Selective modulation of neuronal firing by pulse stimulations with different frequencies in rat hippocampus. Qiu C; Feng Z; Zheng L; Ma W Biomed Eng Online; 2019 Jul; 18(1):79. PubMed ID: 31337402 [TBL] [Abstract][Full Text] [Related]
9. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. Staff NP; Jung HY; Thiagarajan T; Yao M; Spruston N J Neurophysiol; 2000 Nov; 84(5):2398-408. PubMed ID: 11067982 [TBL] [Abstract][Full Text] [Related]
10. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation. Viriyopase A; Memmesheimer RM; Gielen S Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475 [TBL] [Abstract][Full Text] [Related]
11. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Skaggs WE; McNaughton BL; Wilson MA; Barnes CA Hippocampus; 1996; 6(2):149-72. PubMed ID: 8797016 [TBL] [Abstract][Full Text] [Related]
12. The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow. Migliore R; Lupascu CA; Bologna LL; Romani A; Courcol JD; Antonel S; Van Geit WAH; Thomson AM; Mercer A; Lange S; Falck J; Rössert CA; Shi Y; Hagens O; Pezzoli M; Freund TF; Kali S; Muller EB; Schürmann F; Markram H; Migliore M PLoS Comput Biol; 2018 Sep; 14(9):e1006423. PubMed ID: 30222740 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory. Liu YZ; Wang Y; Shen W; Wang Z J Physiol; 2017 Aug; 595(15):5327-5340. PubMed ID: 28555875 [TBL] [Abstract][Full Text] [Related]
14. Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices. Morin F; Beaulieu C; Lacaille JC J Neurophysiol; 1996 Jul; 76(1):1-16. PubMed ID: 8836204 [TBL] [Abstract][Full Text] [Related]
15. High frequency stimulation of afferent fibers generates asynchronous firing in the downstream neurons in hippocampus through partial block of axonal conduction. Feng Z; Wang Z; Guo Z; Zhou W; Cai Z; Durand DM Brain Res; 2017 Apr; 1661():67-78. PubMed ID: 28213155 [TBL] [Abstract][Full Text] [Related]
16. Properties of a calcium-activated K(+) current on interneurons in the developing rat hippocampus. Aoki T; Baraban SC J Neurophysiol; 2000 Jun; 83(6):3453-61. PubMed ID: 10848561 [TBL] [Abstract][Full Text] [Related]
17. Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Jolivet R; Lewis TJ; Gerstner W J Neurophysiol; 2004 Aug; 92(2):959-76. PubMed ID: 15277599 [TBL] [Abstract][Full Text] [Related]
18. Characterization of reliability of spike timing in spinal interneurons during oscillating inputs. Beierholm U; Nielsen CD; Ryge J; Alstrøm P; Kiehn O J Neurophysiol; 2001 Oct; 86(4):1858-68. PubMed ID: 11600645 [TBL] [Abstract][Full Text] [Related]
19. Sinusoidal stimulation on afferent fibers can selectively activate different types of neurons in rat hippocampus. Wang Z; Feng Z; Hu H; Yuan Y Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6880-6883. PubMed ID: 31947421 [TBL] [Abstract][Full Text] [Related]
20. Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. Teka W; Marinov TM; Santamaria F PLoS Comput Biol; 2014 Mar; 10(3):e1003526. PubMed ID: 24675903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]