BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37792184)

  • 61. Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater.
    Memon JR; Memon SQ; Bhanger MI; El-Turki A; Hallam KR; Allen GC
    Colloids Surf B Biointerfaces; 2009 May; 70(2):232-7. PubMed ID: 19181491
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives.
    Sinha R; Kumar R; Sharma P; Kant N; Shang J; Aminabhavi TM
    J Environ Manage; 2022 Sep; 317():115356. PubMed ID: 35623129
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficient Removal of Hexavalent Chromium (Cr(VI)) from Wastewater Using Amide-Modified Biochar.
    Ali A; Alharthi S; Al-Shaalan NH; Naz A; Fan HS
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446811
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China.
    Dong D; Zhao X; Hua X; Liu J; Gao M
    J Hazard Mater; 2009 Mar; 162(2-3):1261-8. PubMed ID: 18650011
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hexavalent chromium removal from water: adsorption properties of in natura and magnetic nanomodified sugarcane bagasse.
    Abilio TE; Soares BC; José JC; Milani PA; Labuto G; Carrilho ENVM
    Environ Sci Pollut Res Int; 2021 May; 28(19):24816-24829. PubMed ID: 33405161
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multifunctional cobalt oxide nanocomposites for efficient removal of heavy metals from aqueous solutions.
    El Mouden A; El Messaoudi N; El Guerraf A; Bouich A; Mehmeti V; Lacherai A; Jada A; Sher F
    Chemosphere; 2023 Mar; 317():137922. PubMed ID: 36682638
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Starch-g-Poly-(N, N-dimethyl acrylamide-co-acrylic acid): an efficient Cr (VI) ion binder.
    Kolya H; Roy A; Tripathy T
    Int J Biol Macromol; 2015 Jan; 72():560-8. PubMed ID: 25224290
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water.
    Guo X; Du B; Wei Q; Yang J; Hu L; Yan L; Xu W
    J Hazard Mater; 2014 Aug; 278():211-20. PubMed ID: 25016452
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.
    Shaker MA; albishri HM
    Chemosphere; 2014 Sep; 111():587-95. PubMed ID: 24997970
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media.
    Ahmadi A; Foroutan R; Esmaeili H; Tamjidi S
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):14044-14057. PubMed ID: 32036528
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Removal of Cr(VI) from industrial wastewaters by adsorption Part I: determination of optimum conditions.
    Uysal M; Ar I
    J Hazard Mater; 2007 Oct; 149(2):482-91. PubMed ID: 17513041
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Study on the Adsorption of Cr
    Li XD; Zhai QZ
    Chem Biodivers; 2023 Jun; 20(6):e202201095. PubMed ID: 37026436
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Spontaneous Cr(VI) and Cd(II) biosorption potential of native pinnae tissue of Pteris vittata L., a tropical invasive pteridophyte.
    Prabhu SG; Srinikethan G; Hegde S
    Int J Phytoremediation; 2019; 21(4):380-390. PubMed ID: 30740992
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds.
    Ahmadijokani F; Molavi H; Peyghambari A; Shojaei A; Rezakazemi M; Aminabhavi TM; Arjmand M
    J Environ Manage; 2022 Aug; 316():115214. PubMed ID: 35594821
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon.
    Karthikeyan T; Rajgopal S; Miranda LR
    J Hazard Mater; 2005 Sep; 124(1-3):192-9. PubMed ID: 15927367
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Growth of MWCNTs from Azadirachta indica oil for optimization of chromium(VI) removal efficiency using machine learning approach.
    Uthayakumar H; Radhakrishnan P; Shanmugam K; Kushwaha OS
    Environ Sci Pollut Res Int; 2022 May; 29(23):34841-34860. PubMed ID: 35041160
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Plant seed extract assisted, eco-synthesized C-ZnO nanoparticles: Characterization, chromium(VI) ion adsorption and kinetic studies.
    Rao S; A S S; Jayaprakash GK; Swamy MM; K S; Kumar D
    Luminescence; 2023 Jul; 38(7):1123-1131. PubMed ID: 35166440
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adsorption of Cr(VI) on nano Uio-66-NH
    Wu S; Ge Y; Wang Y; Chen X; Li F; Xuan H; Li X
    Environ Technol; 2018 Aug; 39(15):1937-1948. PubMed ID: 28625105
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms.
    Mehmood S; Mahmood M; Núñez-Delgado A; Alatalo JM; Elrys AS; Rizwan M; Weng J; Li W; Ahmed W
    Environ Res; 2022 Oct; 213():113614. PubMed ID: 35710023
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: Application in real water samples, recycling and reuse of nanosorbents.
    Gautam RK; Tiwari I
    Chemosphere; 2020 Apr; 245():125553. PubMed ID: 31862552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.