BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 37792280)

  • 1. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods.
    He J; Zhang F; Pan Y; Feng Y; Rushmore J; Torio E; Rathi Y; Makris N; Kikinis R; Golby AJ; O'Donnell LJ
    Hum Brain Mapp; 2023 Dec; 44(17):6055-6073. PubMed ID: 37792280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract.
    Weiss Lucas C; Tursunova I; Neuschmelting V; Nettekoven C; Oros-Peusquens AM; Stoffels G; Faymonville AM; Jon SN; Langen KJ; Lockau H; Goldbrunner R; Grefkes C
    Neuroimage Clin; 2017; 13():297-309. PubMed ID: 28050345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography.
    Chen Z; Tie Y; Olubiyi O; Zhang F; Mehrtash A; Rigolo L; Kahali P; Norton I; Pasternak O; Rathi Y; Golby AJ; O'Donnell LJ
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1475-86. PubMed ID: 26762104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke.
    Auriat AM; Borich MR; Snow NJ; Wadden KP; Boyd LA
    Neuroimage Clin; 2015; 7():771-81. PubMed ID: 25844329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model.
    Liao R; Ning L; Chen Z; Rigolo L; Gong S; Pasternak O; Golby AJ; Rathi Y; O'Donnell LJ
    Neuroimage Clin; 2017; 15():819-831. PubMed ID: 28725549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Navigated transcranial magnetic stimulation for "somatotopic" tractography of the corticospinal tract.
    Conti A; Raffa G; Granata F; Rizzo V; Germanò A; Tomasello F
    Neurosurgery; 2014 Dec; 10 Suppl 4():542-54; discussion 554. PubMed ID: 25072115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI.
    He J; Zhang F; Xie G; Yao S; Feng Y; Bastos DCA; Rathi Y; Makris N; Kikinis R; Golby AJ; O'Donnell LJ
    Hum Brain Mapp; 2021 Aug; 42(12):3887-3904. PubMed ID: 33978265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule.
    Weiss C; Tursunova I; Neuschmelting V; Lockau H; Nettekoven C; Oros-Peusquens AM; Stoffels G; Rehme AK; Faymonville AM; Shah NJ; Langen KJ; Goldbrunner R; Grefkes C
    Neuroimage Clin; 2015; 7():424-37. PubMed ID: 25685709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical assessment of trigeminal nerve tractography using diffusion MRI: A comparison of acquisition b-values and single- and multi-fiber tracking strategies.
    Xie G; Zhang F; Leung L; Mooney MA; Epprecht L; Norton I; Rathi Y; Kikinis R; Al-Mefty O; Makris N; Golby AJ; O'Donnell LJ
    Neuroimage Clin; 2020; 25():102160. PubMed ID: 31954337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking the Corticospinal Tract in Patients With High-Grade Glioma: Clinical Evaluation of Multi-Level Fiber Tracking and Comparison to Conventional Deterministic Approaches.
    Zhylka A; Sollmann N; Kofler F; Radwan A; De Luca A; Gempt J; Wiestler B; Menze B; Krieg SM; Zimmer C; Kirschke JS; Sunaert S; Leemans A; Pluim JPW
    Front Oncol; 2021; 11():761169. PubMed ID: 34970486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of the Corticospinal Tract in Patients with Motor-Eloquent High-Grade Gliomas Using Multilevel Fiber Tractography Combined with Functional Motor Cortex Mapping.
    Zhylka A; Sollmann N; Kofler F; Radwan A; De Luca A; Gempt J; Wiestler B; Menze B; Schroeder A; Zimmer C; Kirschke JS; Sunaert S; Leemans A; Krieg SM; Pluim J
    AJNR Am J Neuroradiol; 2023 Mar; 44(3):283-290. PubMed ID: 36797033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery.
    Pujol S; Wells W; Pierpaoli C; Brun C; Gee J; Cheng G; Vemuri B; Commowick O; Prima S; Stamm A; Goubran M; Khan A; Peters T; Neher P; Maier-Hein KH; Shi Y; Tristan-Vega A; Veni G; Whitaker R; Styner M; Westin CF; Gouttard S; Norton I; Chauvin L; Mamata H; Gerig G; Nabavi A; Golby A; Kikinis R
    J Neuroimaging; 2015; 25(6):875-82. PubMed ID: 26259925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential.
    Henderson F; Abdullah KG; Verma R; Brem S
    Neurosurg Focus; 2020 Feb; 48(2):E6. PubMed ID: 32006950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential involvement of corticospinal tract (CST) fibers in UMN-predominant ALS patients with or without CST hyperintensity: A diffusion tensor tractography study.
    Rajagopalan V; Pioro EP
    Neuroimage Clin; 2017; 14():574-579. PubMed ID: 28337412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensor and non-tensor tractography for the assessment of the corticospinal tract of children with motor disorders: a comparative study.
    Stefanou MI; Lumsden DE; Ashmore J; Ashkan K; Lin JP; Charles-Edwards G
    Neuroradiology; 2016 Oct; 58(10):1005-1016. PubMed ID: 27447871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. White matter fiber tractography: why we need to move beyond DTI.
    Farquharson S; Tournier JD; Calamante F; Fabinyi G; Schneider-Kolsky M; Jackson GD; Connelly A
    J Neurosurg; 2013 Jun; 118(6):1367-77. PubMed ID: 23540269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatotopic location of corticospinal tract at pons in human brain: a diffusion tensor tractography study.
    Hong JH; Son SM; Jang SH
    Neuroimage; 2010 Jul; 51(3):952-5. PubMed ID: 20206703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience.
    Faraji AH; Abhinav K; Jarbo K; Yeh FC; Shin SS; Pathak S; Hirsch BE; Schneider W; Fernandez-Miranda JC; Friedlander RM
    J Neurosurg; 2015 Nov; 123(5):1133-44. PubMed ID: 26047420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods.
    Bucci M; Mandelli ML; Berman JI; Amirbekian B; Nguyen C; Berger MS; Henry RG
    Neuroimage Clin; 2013; 3():361-8. PubMed ID: 24273719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction.
    Jeong JW; Lee J; Kamson DO; Chugani HT; Juhász C
    Magn Reson Imaging; 2015 Sep; 33(7):895-902. PubMed ID: 25959649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.