BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37792858)

  • 1. Facile and Efficient Production of Biomass-Derived Isosorbide Dioxides via Epoxidation Using In situ-generated DMDO under Ultrasonication.
    Hong S; Kim KA; Ryu Y; Lee W; Kim Y; Cha HG
    Chem Asian J; 2023 Nov; 18(22):e202300744. PubMed ID: 37792858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stepwise and Microemulsions Epoxidation of Limonene by Dimethyldioxirane: A Comparative Study.
    Mahamat Ahmat Y; Kaliaguine S
    ACS Omega; 2022 Sep; 7(36):31789-31800. PubMed ID: 36119986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative reactivity of peracids versus dioxiranes (DMDO and TFDO) in the epoxidation of alkenes. A combined experimental and theoretical analysis.
    Bach RD; Dmitrenko O; Adam W; Schambony S
    J Am Chem Soc; 2003 Jan; 125(4):924-34. PubMed ID: 12537490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic applications of nonmetal catalysts for homogeneous oxidations.
    Adam W; Saha-Möller CR; Ganeshpure PA
    Chem Rev; 2001 Nov; 101(11):3499-548. PubMed ID: 11840992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Synthetic Characteristics of Biomass-Derived Isosorbide-Based Poly(arylene ether ketone)s for Sustainable Super Engineering Plastic.
    Park SA; Im C; Oh DX; Hwang SY; Jegal J; Kim JH; Chang YW; Jeon H; Park J
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31288408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Stereoselective epoxidation with bulky dioxiranes generated from substituted cyclohexanones].
    Kurihara M; Miyata N
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1998; (116):63-8. PubMed ID: 10097513
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Cossar PJ; Baker JR; Cain N; McCluskey A
    R Soc Open Sci; 2018 Apr; 5(4):171190. PubMed ID: 29765627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct epoxidation of D-glucal and D-galactal derivatives with in situ generated DMDO.
    Cheshev P; Marra A; Dondoni A
    Carbohydr Res; 2006 Nov; 341(16):2714-6. PubMed ID: 17014831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isosorbide and dimethyl carbonate: a green match.
    Aricò F; Tundo P
    Beilstein J Org Chem; 2016; 12():2256-2266. PubMed ID: 28144292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuous-Flow System.
    Brandi F; Al-Naji M
    ChemSusChem; 2022 Mar; 15(5):e202102525. PubMed ID: 34931452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of geminal substitution on the strain energy of dioxiranes. Origin of the low ring strain of dimethyldioxirane.
    Bach RD; Dmitrenko O
    J Org Chem; 2002 May; 67(11):3884-96. PubMed ID: 12027708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of in situ-generated dimethyldioxirane for inactivation of biological agents.
    Wallace WH; Bushway KE; Miller SD; Delcomyn CA; Renard JJ; Henley MV
    Environ Sci Technol; 2005 Aug; 39(16):6288-92. PubMed ID: 16173594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Enzymatic Conversion of
    Wang Y; Lee YY; Santaus TM; Newcomb CE; Liu J; Geddes CD; Zhang C; Hu Q; Li Y
    Bioenergy Res; 2017 Jun; 10(2):438-448. PubMed ID: 31741699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Pot Preparation of Dimethyl Isosorbide from d-Sorbitol via Dimethyl Carbonate Chemistry.
    Aricò F; Aldoshin AS; Tundo P
    ChemSusChem; 2017 Jan; 10(1):53-57. PubMed ID: 27922205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of preparation routes on the physical and rheological properties of isosorbide-based thermoplastic polyurethanes.
    Jeong JH; Kim HJ; Choi YH; Song GS; Yoo SI; Eom Y
    Macromol Res; 2023; 31(2):133-142. PubMed ID: 36844252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of in situ-generated dimethyldioxirane from an aqueous matrix using selected ion monitoring.
    Delcomyn CA; MacLean HS; Henley MV; Renard JJ
    J Chromatogr A; 2005 Sep; 1089(1-2):211-8. PubMed ID: 16130789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DMDO Hydroxylation of Hydrocarbons via the Oxygen Rebound Mechanism.
    Bach RD
    J Phys Chem A; 2016 Feb; 120(5):840-50. PubMed ID: 26785317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile synthesis of C-24 and C-25 oxysterols by in situ generated ethyl(trifluoromethyl)dioxirane.
    Ogawa S; Kakiyama G; Muto A; Hosoda A; Mitamura K; Ikegawa S; Hofmann AF; Iida T
    Steroids; 2009 Jan; 74(1):81-7. PubMed ID: 18996406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state studies on the dioxirane-mediated asymmetric epoxidation via kinetic resolution and desymmetrization.
    Lorenz JC; Frohn M; Zhou X; Zhang JR; Tang Y; Burke C; Shi Y
    J Org Chem; 2005 Apr; 70(8):2904-11. PubMed ID: 15822948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.