BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37792916)

  • 1. Disentangling Positive Selection from Relaxed Selection in Animal Mitochondrial Genomes.
    Zwonitzer KD; Iverson ENK; Sterling JE; Weaver RJ; Maclaine BA; Havird JC
    Am Nat; 2023 Oct; 202(4):E121-E129. PubMed ID: 37792916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.).
    Jacobsen MW; da Fonseca RR; Bernatchez L; Hansen MM
    Mol Phylogenet Evol; 2016 Feb; 95():161-70. PubMed ID: 26654959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stronger evidence for relaxed selection than adaptive evolution in high-elevation animal mtDNA.
    Iverson ENK; Criswell A; Havird JC
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution of the Bovini tribe (Bovidae, Bovinae): is there evidence of rapid evolution or reduced selective constraint in Domestic cattle?
    MacEachern S; McEwan J; McCulloch A; Mather A; Savin K; Goddard M
    BMC Genomics; 2009 Apr; 10():179. PubMed ID: 19393048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of mitochondrial genomes in subterranean caviomorph rodents: adaptation against a background of purifying selection.
    Tomasco IH; Lessa EP
    Mol Phylogenet Evol; 2011 Oct; 61(1):64-70. PubMed ID: 21723951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial covariation of mutation and nonsynonymous substitution rates in vertebrate mitochondrial genomes.
    Broughton RE; Reneau PC
    Mol Biol Evol; 2006 Aug; 23(8):1516-24. PubMed ID: 16705079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution.
    Yang Z
    Mol Biol Evol; 1998 May; 15(5):568-73. PubMed ID: 9580986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of positive and negative selection in the molecular evolution of insect endosymbionts.
    Fry AJ; Wernegreen JJ
    Gene; 2005 Aug; 355():1-10. PubMed ID: 16039807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purifying selection and genetic drift shaped Pleistocene evolution of the mitochondrial genome in an endangered Australian freshwater fish.
    Pavlova A; Gan HM; Lee YP; Austin CM; Gilligan DM; Lintermans M; Sunnucks P
    Heredity (Edinb); 2017 May; 118(5):466-476. PubMed ID: 28051058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparative Analysis of Selection Pressures Suffered by Mitochondrial Genomes in Two Planthopper Species with Divergent Climate Distributions.
    Sun KK; Ding Y; Chen L; Sun JT
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncorrected nucleotide bias in mtDNA can mimic the effects of positive Darwinian selection.
    Albu M; Min XJ; Hickey D; Golding B
    Mol Biol Evol; 2008 Dec; 25(12):2521-4. PubMed ID: 18842686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of selection in the evolution of marine turtles mitogenomes.
    Ramos EKDS; Freitas L; Nery MF
    Sci Rep; 2020 Oct; 10(1):16953. PubMed ID: 33046778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing the phylogenetic history of long-term effective population size and life-history traits using patterns of amino acid replacement in mitochondrial genomes of mammals and birds.
    Nabholz B; Uwimana N; Lartillot N
    Genome Biol Evol; 2013; 5(7):1273-90. PubMed ID: 23711670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete mitochondrial genomes from four subspecies of common chaffinch (Fringilla coelebs): new inferences about mitochondrial rate heterogeneity, neutral theory, and phylogenetic relationships within the order Passeriformes.
    Marshall HD; Baker AJ; Grant AR
    Gene; 2013 Mar; 517(1):37-45. PubMed ID: 23313296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for relaxed selection of mitogenome in rapid-flow cyprinids.
    Lu Y; Xing H; Zhang D
    Genes Genomics; 2019 Jul; 41(7):863-869. PubMed ID: 31016677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary divergence of mitochondrial genomes in two Tetranychus species distributed across different climates.
    Sun JT; Jin PY; Hoffmann AA; Duan XZ; Dai J; Hu G; Xue XF; Hong XY
    Insect Mol Biol; 2018 Dec; 27(6):698-709. PubMed ID: 29797479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causes and Consequences of Rapidly Evolving mtDNA in a Plant Lineage.
    Havird JC; Trapp P; Miller CM; Bazos I; Sloan DB
    Genome Biol Evol; 2017 Feb; 9(2):323-336. PubMed ID: 28164243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flight loss linked to faster molecular evolution in insects.
    Mitterboeck TF; Adamowicz SJ
    Proc Biol Sci; 2013 Sep; 280(1767):20131128. PubMed ID: 23884090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Canis mitochondrial DNA demonstrates high concordance between the control region and ATPase genes.
    Rutledge LY; Patterson BR; White BN
    BMC Evol Biol; 2010 Jul; 10():215. PubMed ID: 20637067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. d
    Gu X
    J Mol Evol; 2022 Oct; 90(5):342-351. PubMed ID: 35920867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.