These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37792925)

  • 1. Whole-Genome Sequencing Reveals That Regulatory and Low Pleiotropy Variants Underlie Local Adaptation to Environmental Variability in Purple Sea Urchins.
    Petak C; Frati L; Brennan RS; Pespeni MH
    Am Nat; 2023 Oct; 202(4):571-586. PubMed ID: 37792925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.
    Pespeni MH; Chan F; Menge BA; Palumbi SR
    Integr Comp Biol; 2013 Nov; 53(5):857-70. PubMed ID: 23980118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.
    Evans TG; Padilla-Gamiño JL; Kelly MW; Pespeni MH; Chan F; Menge BA; Gaylord B; Hill TM; Russell AD; Palumbi SR; Sanford E; Hofmann GE
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():33-42. PubMed ID: 25773301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spotting disease disrupts the microbiome of infected purple sea urchins, Strongylocentrotus purpuratus.
    Shaw CG; Pavloudi C; Crow RS; Saw JH; Smith LC
    BMC Microbiol; 2024 Jan; 24(1):11. PubMed ID: 38172649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological role of purple sea urchins.
    Pearse JS
    Science; 2006 Nov; 314(5801):940-1. PubMed ID: 17095690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the regulation of growth and biomineralization genes revealed through long-term common-garden acclimation and experimental genomics in the purple sea urchin.
    Pespeni MH; Barney BT; Palumbi SR
    Evolution; 2013 Jul; 67(7):1901-14. PubMed ID: 23815648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local Genomic Instability of the
    Barela Hudgell MA; Momtaz F; Jafri A; Alekseyev MA; Smith LC
    Genes (Basel); 2024 Feb; 15(2):. PubMed ID: 38397211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic.
    Evans TG; Pespeni MH; Hofmann GE; Palumbi SR; Sanford E
    Mol Ecol; 2017 Apr; 26(8):2257-2275. PubMed ID: 28141889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique Genomic and Phenotypic Responses to Extreme and Variable pH Conditions in Purple Urchin Larvae.
    Garrett AD; Brennan RS; Steinhart AL; Pelletier AM; Pespeni MH
    Integr Comp Biol; 2020 Aug; 60(2):318-331. PubMed ID: 32544238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic.
    Pespeni MH; Palumbi SR
    Mol Ecol; 2013 Jul; 22(13):3580-97. PubMed ID: 23802552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary change during experimental ocean acidification.
    Pespeni MH; Sanford E; Gaylord B; Hill TM; Hosfelt JD; Jaris HK; LaVigne M; Lenz EA; Russell AD; Young MK; Palumbi SR
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6937-42. PubMed ID: 23569232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary analysis of the cis-regulatory region of the spicule matrix gene SM50 in strongylocentrotid sea urchins.
    Walters J; Binkley E; Haygood R; Romano LA
    Dev Biol; 2008 Mar; 315(2):567-78. PubMed ID: 18262514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus.
    Kelly MW; Padilla-Gamiño JL; Hofmann GE
    Glob Chang Biol; 2013 Aug; 19(8):2536-46. PubMed ID: 23661315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesive plasticity among populations of purple sea urchin (
    Stark AY; Narvaez CA; Russell MP
    J Exp Biol; 2020 Aug; 223(Pt 15):. PubMed ID: 32587066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450 1 genes in early deuterostomes (tunicates and sea urchins) and vertebrates (chicken and frog): origin and diversification of the CYP1 gene family.
    Goldstone JV; Goldstone HM; Morrison AM; Tarrant A; Kern SE; Woodin BR; Stegeman JJ
    Mol Biol Evol; 2007 Dec; 24(12):2619-31. PubMed ID: 17916789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions.
    Brennan RS; Garrett AD; Huber KE; Hargarten H; Pespeni MH
    Proc Biol Sci; 2019 Jun; 286(1904):20190943. PubMed ID: 31185858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-genome positive selection and habitat-driven evolution in a shallow and a deep-sea urchin.
    Oliver TA; Garfield DA; Manier MK; Haygood R; Wray GA; Palumbi SR
    Genome Biol Evol; 2010; 2():800-14. PubMed ID: 20935062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpBase: the sea urchin genome database and web site.
    Cameron RA; Samanta M; Yuan A; He D; Davidson E
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D750-4. PubMed ID: 19010966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population genetics of cis-regulatory sequences that operate during embryonic development in the sea urchin Strongylocentrotus purpuratus.
    Garfield D; Haygood R; Nielsen WJ; Wray GA
    Evol Dev; 2012; 14(2):152-67. PubMed ID: 23017024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide polymorphisms show unexpected targets of natural selection.
    Pespeni MH; Garfield DA; Manier MK; Palumbi SR
    Proc Biol Sci; 2012 Apr; 279(1732):1412-20. PubMed ID: 21993504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.