These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37792960)
41. Electronic spectroscopy of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. Vansco MF; Marchetti B; Lester MI J Chem Phys; 2018 Dec; 149(24):244309. PubMed ID: 30599734 [TBL] [Abstract][Full Text] [Related]
42. New particle formation from the reactions of ozone with indene and styrene. Bracco LLB; Tucceri ME; Escalona A; Díaz-de-Mera Y; Aranda A; Rodríguez AM; Rodríguez D Phys Chem Chem Phys; 2019 Jun; 21(21):11214-11225. PubMed ID: 31099372 [TBL] [Abstract][Full Text] [Related]
43. Structure-activity relationship (SAR) for the gas-phase ozonolysis of aliphatic alkenes and dialkenes. McGillen MR; Carey TJ; Archibald AT; Wenger JC; Shallcross DE; Percival CJ Phys Chem Chem Phys; 2008 Apr; 10(13):1757-68. PubMed ID: 18350181 [TBL] [Abstract][Full Text] [Related]
44. Direct measurement of OH radicals from ozonolysis of selected alkenes: a EUPHORE simulation chamber study. Siese M; Becker KH; Brockmann KJ; Geiger H; Hofzumahaus A; Holland F; Mihelcic D; Wirtz K Environ Sci Technol; 2001 Dec; 35(23):4660-7. PubMed ID: 11770768 [TBL] [Abstract][Full Text] [Related]
45. Study on ozonolysis of asymmetric alkenes with matrix isolation and FT-IR spectroscopy. Wang Z; Tong S; Chen M; Jing B; Li W; Guo Y; Ge M; Wang S Chemosphere; 2020 Aug; 252():126413. PubMed ID: 32197171 [TBL] [Abstract][Full Text] [Related]
47. Isolating α-Pinene Ozonolysis Pathways Reveals New Insights into Peroxy Radical Chemistry and Secondary Organic Aerosol Formation. Zhao Z; Zhang W; Alexander T; Zhang X; Martin DBC; Zhang H Environ Sci Technol; 2021 May; 55(10):6700-6709. PubMed ID: 33913707 [TBL] [Abstract][Full Text] [Related]
48. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Newland MJ; Rickard AR; Alam MS; Vereecken L; Muñoz A; Ródenas M; Bloss WJ Phys Chem Chem Phys; 2015 Feb; 17(6):4076-88. PubMed ID: 25562069 [TBL] [Abstract][Full Text] [Related]
49. Two Pathways for Dissociation of Highly Energized syn-CH3CHOO to OH Plus Vinoxy. Wang X; Bowman JM J Phys Chem Lett; 2016 Sep; 7(17):3359-64. PubMed ID: 27513186 [TBL] [Abstract][Full Text] [Related]
50. Identification and quantification of carbonyl-containing α-pinene ozonolysis products using Jackson SR; Ham JE; Harrison JC; Wells JR J Atmos Chem; 2017 Sep; 74(3):325-338. PubMed ID: 28701805 [TBL] [Abstract][Full Text] [Related]
51. Rapid Allylic 1,6 H-Atom Transfer in an Unsaturated Criegee Intermediate. Hansen AS; Qian Y; Sojdak CA; Kozlowski MC; Esposito VJ; Francisco JS; Klippenstein SJ; Lester MI J Am Chem Soc; 2022 Apr; 144(13):5945-5955. PubMed ID: 35344666 [TBL] [Abstract][Full Text] [Related]
52. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates. Lee YP J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082 [TBL] [Abstract][Full Text] [Related]
53. Direct observation of the gas-phase Criegee intermediate (CH2OO). Taatjes CA; Meloni G; Selby TM; Trevitt AJ; Osborn DL; Percival CJ; Shallcross DE J Am Chem Soc; 2008 Sep; 130(36):11883-5. PubMed ID: 18702490 [TBL] [Abstract][Full Text] [Related]
54. Detection and identification of Criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs: comparison between experimental measurements and theoretical calculations. Giorio C; Campbell SJ; Bruschi M; Archibald AT; Kalberer M Faraday Discuss; 2017 Aug; 200():559-578. PubMed ID: 28580994 [TBL] [Abstract][Full Text] [Related]
55. Surfactant-Assisted Ozonolysis of Alkenes in Water: Mitigation of Frothing Using Coolade as a Low-Foaming Surfactant. Buntasana S; Hayashi J; Saetung P; Klumphu P; Vilaivan T; Padungros P J Org Chem; 2022 May; 87(10):6525-6540. PubMed ID: 35133162 [TBL] [Abstract][Full Text] [Related]
56. Infrared characterization of formation and resonance stabilization of the Criegee intermediate methyl vinyl ketone oxide. Chung CA; Lee YP Commun Chem; 2021 Jan; 4(1):8. PubMed ID: 36697539 [TBL] [Abstract][Full Text] [Related]
57. Unimolecular Reaction Rate Measurement of Zhou X; Liu Y; Dong W; Yang X J Phys Chem Lett; 2019 Sep; 10(17):4817-4821. PubMed ID: 31382744 [TBL] [Abstract][Full Text] [Related]
58. Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production. Barber VP; Pandit S; Green AM; Trongsiriwat N; Walsh PJ; Klippenstein SJ; Lester MI J Am Chem Soc; 2018 Aug; 140(34):10866-10880. PubMed ID: 30074392 [TBL] [Abstract][Full Text] [Related]
59. Substituent Effects on the Electronic Spectroscopy of Four-Carbon Criegee Intermediates. Liu T; Zou M; Caracciolo A; Sojdak CA; Lester MI J Phys Chem A; 2022 Sep; 126(38):6734-6741. PubMed ID: 36108247 [TBL] [Abstract][Full Text] [Related]
60. Potential role of stabilized Criegee radicals in sulfuric acid production in a high biogenic VOC environment. Kim S; Guenther A; Lefer B; Flynn J; Griffin R; Rutter AP; Gong L; Cevik BK Environ Sci Technol; 2015 Mar; 49(6):3383-91. PubMed ID: 25700170 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]