BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37793029)

  • 1. Beyond Cavity Born-Oppenheimer: On Nonadiabatic Coupling and Effective Ground State Hamiltonians in Vibro-Polaritonic Chemistry.
    Fischer EW; Saalfrank P
    J Chem Theory Comput; 2023 Oct; 19(20):7215-7229. PubMed ID: 37793029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Quantum Chemistry Approach to Linear Vibro-Polaritonic Infrared Spectra with Perturbative Electron-Photon Correlation.
    Fischer EW; Syska JA; Saalfrank P
    J Phys Chem Lett; 2024 Feb; 15(8):2262-2269. PubMed ID: 38381036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities.
    Fischer EW; Saalfrank P
    J Chem Phys; 2021 Mar; 154(10):104311. PubMed ID: 33722029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the cavity Born-Oppenheimer approximation.
    Fiechter MR; Richardson JO
    J Chem Phys; 2024 May; 160(18):. PubMed ID: 38717280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule Systems.
    Schnappinger T; Kowalewski M
    J Chem Theory Comput; 2023 Dec; 19(24):9278-9289. PubMed ID: 38084914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Linear-Response Approach to Vibro-Polaritons in the Cavity Born-Oppenheimer Approximation.
    Bonini J; Flick J
    J Chem Theory Comput; 2022 May; 18(5):2764-2773. PubMed ID: 35404591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonadiabatic Wave Packet Dynamics with Ab Initio Cavity-Born-Oppenheimer Potential Energy Surfaces.
    Schnappinger T; Kowalewski M
    J Chem Theory Comput; 2023 Jan; 19(2):460-71. PubMed ID: 36625723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity-induced non-adiabatic dynamics and spectroscopy of molecular rovibrational polaritons studied by multi-mode quantum models.
    Fischer EW; Saalfrank P
    J Chem Phys; 2022 Jul; 157(3):034305. PubMed ID: 35868933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics.
    Ruggenthaler M; Sidler D; Rubio A
    Chem Rev; 2023 Oct; 123(19):11191-11229. PubMed ID: 37729114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity-catalyzed hydrogen transfer dynamics in an entangled molecular ensemble under vibrational strong coupling.
    Fischer EW; Saalfrank P
    Phys Chem Chem Phys; 2023 Apr; 25(16):11771-11779. PubMed ID: 37067354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-Matter Hybrid-Orbital-Based First-Principles Methods: The Influence of Polariton Statistics.
    Buchholz F; Theophilou I; Giesbertz KJH; Ruggenthaler M; Rubio A
    J Chem Theory Comput; 2020 Sep; 16(9):5601-5620. PubMed ID: 32692551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Nature of Vibro-Polaritonic States in Water and Heavy Water.
    Kadyan A; Suresh MP; Johns B; George J
    Chemphyschem; 2024 Feb; 25(4):e202300560. PubMed ID: 38117002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics.
    Mandal A; Taylor MAD; Weight BM; Koessler ER; Li X; Huo P
    Chem Rev; 2023 Aug; 123(16):9786-9879. PubMed ID: 37552606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons.
    Campos-Gonzalez-Angulo JA; Ribeiro RF; Yuen-Zhou J
    Nat Commun; 2019 Oct; 10(1):4685. PubMed ID: 31615990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled cluster cavity Born-Oppenheimer approximation for electronic strong coupling.
    Angelico S; Haugland TS; Ronca E; Koch H
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38051099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity Control of Molecular Spectroscopy and Photophysics.
    Gu B; Gu Y; Chernyak VY; Mukamel S
    Acc Chem Res; 2023 Oct; 56(20):2753-2762. PubMed ID: 37782841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics.
    Mahapatra S
    Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry under Vibrational Strong Coupling.
    Nagarajan K; Thomas A; Ebbesen TW
    J Am Chem Soc; 2021 Oct; 143(41):16877-16889. PubMed ID: 34609858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbation theoretical approaches to strong light-matter coupling in ground and excited electronic states for the description of molecular polaritons.
    Bauer M; Dreuw A
    J Chem Phys; 2023 Mar; 158(12):124128. PubMed ID: 37003729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.