BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37793205)

  • 21. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework.
    Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. i6mA-DNCP: Computational Identification of DNA
    Kong L; Zhang L
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31635172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SoftVoting6mA: An improved ensemble-based method for predicting DNA N6-methyladenine sites in cross-species genomes.
    Yin Z; Lyu J; Zhang G; Huang X; Ma Q; Jiang J
    Math Biosci Eng; 2024 Feb; 21(3):3798-3815. PubMed ID: 38549308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. i6mA-Vote: Cross-Species Identification of DNA N6-Methyladenine Sites in Plant Genomes Based on Ensemble Learning With Voting.
    Teng Z; Zhao Z; Li Y; Tian Z; Guo M; Lu Q; Wang G
    Front Plant Sci; 2022; 13():845835. PubMed ID: 35237293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CNN6mA: Interpretable neural network model based on position-specific CNN and cross-interactive network for 6mA site prediction.
    Tsukiyama S; Hasan MM; Kurata H
    Comput Struct Biotechnol J; 2023; 21():644-654. PubMed ID: 36659917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. i6mA-Caps: a CapsuleNet-based framework for identifying DNA N6-methyladenine sites.
    Rehman MU; Tayara H; Zou Q; Chong KT
    Bioinformatics; 2022 Aug; 38(16):3885-3891. PubMed ID: 35771648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The exploration of N6-deoxyadenosine methylation in mammalian genomes.
    Li X; Zhang Z; Luo X; Schrier J; Yang AD; Wu TP
    Protein Cell; 2021 Oct; 12(10):756-768. PubMed ID: 34405377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N6-methyladenine functions as a potential epigenetic mark in eukaryotes.
    Sun Q; Huang S; Wang X; Zhu Y; Chen Z; Chen D
    Bioessays; 2015 Nov; 37(11):1155-62. PubMed ID: 26293475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using k-mer embeddings learned from a Skip-gram based neural network for building a cross-species DNA N6-methyladenine site prediction model.
    Nguyen TTD; Trinh VN; Le NQK; Ou YY
    Plant Mol Biol; 2021 Dec; 107(6):533-542. PubMed ID: 34843033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-MP: a generalized DNA modifications predictor for multiple species based on powerful sequence encoding method.
    Nabeel Asim M; Ali Ibrahim M; Fazeel A; Dengel A; Ahmed S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36528802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N6-Methyladenine: A Conserved and Dynamic DNA Mark.
    O'Brown ZK; Greer EL
    Adv Exp Med Biol; 2016; 945():213-246. PubMed ID: 27826841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N
    Wang Y; Sheng Y; Liu Y; Pan B; Huang J; Warren A; Gao S
    Eur J Protistol; 2017 Apr; 58():94-102. PubMed ID: 28135687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conjoint expression and purification strategy for acquiring proteins with ultra-low DNA N6-methyladenine backgrounds in Escherichia coli.
    Chen Z; Liu Y; Wang H
    Biosci Rep; 2021 Mar; 41(3):. PubMed ID: 33660764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress.
    Yao B; Cheng Y; Wang Z; Li Y; Chen L; Huang L; Zhang W; Chen D; Wu H; Tang B; Jin P
    Nat Commun; 2017 Oct; 8(1):1122. PubMed ID: 29066820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iDNA-MT: Identification DNA Modification Sites in Multiple Species by Using Multi-Task Learning Based a Neural Network Tool.
    Yang X; Ye X; Li X; Wei L
    Front Genet; 2021; 12():663572. PubMed ID: 33868390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N6-methyladenine: A Rare and Dynamic DNA Mark.
    O'Brown ZK; Greer EL
    Adv Exp Med Biol; 2022; 1389():177-210. PubMed ID: 36350511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving DNA 6mA Site Prediction via Integrating Bidirectional Long Short-Term Memory, Convolutional Neural Network, and Self-Attention Mechanism.
    Hu J; Tang YX; Zhou Y; Li Z; Rao B; Zhang GJ
    J Chem Inf Model; 2023 Sep; 63(17):5689-5700. PubMed ID: 37603823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA.
    O'Brown ZK; Boulias K; Wang J; Wang SY; O'Brown NM; Hao Z; Shibuya H; Fady PE; Shi Y; He C; Megason SG; Liu T; Greer EL
    BMC Genomics; 2019 Jun; 20(1):445. PubMed ID: 31159718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N
    Xiao CL; Zhu S; He M; Chen D; Zhang Q; Chen Y; Yu G; Liu J; Xie SQ; Luo F; Liang Z; Wang DP; Bo XC; Gu XF; Wang K; Yan GR
    Mol Cell; 2018 Jul; 71(2):306-318.e7. PubMed ID: 30017583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of methods for predicting DNA N6-methyladenine sites.
    Han K; Wang J; Wang Y; Zhang L; Yu M; Xie F; Zheng D; Xu Y; Ding Y; Wan J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.