These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37793353)

  • 1. Current-voltage characteristics of focused ion beam fabricated superconducting tungsten meanders.
    Kumar A; Husale S; Saravanan MP; Gajar B; Yousuf M; Saini A; Yadav MG; Aloysius RP
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37793353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting properties of tungsten nanowires fabricated using focussed ion beam technique.
    Aloysius RP; Husale S; Kumar A; Ahmad F; Gangwar AK; Papanai GS; Gupta A
    Nanotechnology; 2019 Oct; 30(40):405001. PubMed ID: 31247608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.
    Makise K; Terai H; Tominari Y; Tanaka S; Shinozaki B
    Sci Rep; 2016 Jun; 6():27001. PubMed ID: 27311595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.
    Constantino NGN; Anwar MS; Kennedy OW; Dang M; Warburton PA; Fenton JC
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29914174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconducting transition in Nb nanowires fabricated using focused ion beam.
    Tettamanzi GC; Pakes CI; Potenza A; Rubanov S; Marrows CH; Prawer S
    Nanotechnology; 2009 Nov; 20(46):465302. PubMed ID: 19843991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystalline Niobium Carbide Superconducting Nanowires Prepared by Focused Ion Beam Direct Writing.
    Porrati F; Barth S; Sachser R; Dobrovolskiy OV; Seybert A; Frangakis AS; Huth M
    ACS Nano; 2019 Jun; 13(6):6287-6296. PubMed ID: 31046238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate mediated nitridation of niobium into superconducting Nb
    Gajar B; Yadav S; Sawle D; Maurya KK; Gupta A; Aloysius RP; Sahoo S
    Sci Rep; 2019 Jun; 9(1):8811. PubMed ID: 31217545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Superconducting Nanohelices Grown by He
    Córdoba R; Mailly D; Rezaev RO; Smirnova EI; Schmidt OG; Fomin VM; Zeitler U; Guillamón I; Suderow H; De Teresa JM
    Nano Lett; 2019 Dec; 19(12):8597-8604. PubMed ID: 31730351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowire bolometer using a 2D high-temperature superconductor.
    Ghosh S; Jangade DA; Deshmukh MM
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36179585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting properties of in-plane W-C nanowires grown by He
    Orús P; Córdoba R; Hlawacek G; De Teresa JM
    Nanotechnology; 2021 Feb; 32(8):085301. PubMed ID: 33171446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructural analysis and transport properties of MoO and MoC nanostructures prepared by focused electron beam-induced deposition.
    Makise K; Mitsuishi K; Shimojo M; Shinozaki B
    Sci Rep; 2014 Jul; 4():5740. PubMed ID: 25033894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconductivity of freestanding tungsten nanofeatures grown by focused-ion-beam.
    Li W; Gu C; Warburton PA
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7436-8. PubMed ID: 21137953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires.
    Orús P; Fomin VM; De Teresa JM; Córdoba R
    Sci Rep; 2021 Sep; 11(1):17698. PubMed ID: 34489493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of superconductivity in electrochemically fabricated AuSn nanowires.
    Kumar N; Tian ML; Wang JG; Watts W; Kindt J; Mallouk TE; Chan MH
    Nanotechnology; 2008 Sep; 19(36):365704. PubMed ID: 21828885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superconductivity in 4-Angstrom carbon nanotubes--a short review.
    Wang Z; Shi W; Lortz R; Sheng P
    Nanoscale; 2012 Jan; 4(1):21-41. PubMed ID: 22105840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust nitridation technique for fabrication of disordered superconducting TiN thin films featuring phase slip events.
    Yadav S; Kaushik V; Saravanan MP; Aloysius RP; Ganesan V; Sahoo S
    Sci Rep; 2021 Apr; 11(1):7888. PubMed ID: 33846407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical Growth of Superconducting Crystalline Hollow Nanowires by He
    Córdoba R; Ibarra A; Mailly D; De Teresa JM
    Nano Lett; 2018 Feb; 18(2):1379-1386. PubMed ID: 29357248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum suppression of superconductivity in ultrathin nanowires.
    Bezryadin A; Lau CN; Tinkham M
    Nature; 2000 Apr; 404(6781):971-4. PubMed ID: 10801120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum phase slip phenomenon in ultra-narrow superconducting nanorings.
    Arutyunov KY; Hongisto TT; Lehtinen JS; Leino LI; Vasiliev AL
    Sci Rep; 2012; 2():293. PubMed ID: 22389762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample preparation toward seamless 3D imaging technique from micrometer to nanometer scale.
    Miyake A; Matsuno J; Toh S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i24-i25. PubMed ID: 25359821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.