BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37793529)

  • 1. Synthesis and catalytic performance of wood cellulose nanofibers grafted with polylactic acid in rare-earth complexes based on tetrazole carboxylic acids.
    Pang J; Ke Z; Jiang T; Tang F; Zhang S; He K
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127218. PubMed ID: 37793529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous and Stable Zn-Series Metal-Organic Frameworks as Efficient Catalysts for Grafting Wood Nanofibers with Polycaprolactone via a Copolymerization Approach.
    Gao QF; Jiang TL; Li WZ; Tan DF; Zhang XH; Pang JY; Zhang SH
    Inorg Chem; 2023 Feb; 62(8):3464-3473. PubMed ID: 36791390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and catalytic performance of banana cellulose nanofibres grafted with poly(ε-caprolactone) in a novel two-dimensional zinc(II) metal-organic framework.
    Pang J; Gao Q; Yin L; Zhang S
    Int J Biol Macromol; 2023 Jan; 224():568-577. PubMed ID: 36270395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers.
    Liu S; Zhang Q; Gou S; Zhang L; Wang Z
    Carbohydr Polym; 2021 Jan; 251():117018. PubMed ID: 33142579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood Cellulose Nanofibers Grafted with Poly(ε-caprolactone) Catalyzed by ZnEu-MOF for Functionalization and Surface Modification of PCL Films.
    Pang J; Jiang T; Ke Z; Xiao Y; Li W; Zhang S; Guo P
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoplastic cellulose-graft-poly(L-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst.
    Yan C; Zhang J; Lv Y; Yu J; Wu J; Zhang J; He J
    Biomacromolecules; 2009 Aug; 10(8):2013-8. PubMed ID: 19722554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-Induced Modification of Nanocellulose: The Design of Self-Fluorescent Drug Carriers.
    Khine YY; Batchelor R; Raveendran R; Stenzel MH
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900499. PubMed ID: 31736180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoresponsive Poly(
    Mendoza DJ; Ayurini M; Browne C; Raghuwanshi VS; Simon GP; Hooper JF; Garnier G
    Biomacromolecules; 2022 Apr; 23(4):1610-1621. PubMed ID: 35041381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling.
    Olsén P; Herrera N; Berglund LA
    Biomacromolecules; 2020 Feb; 21(2):597-603. PubMed ID: 31769663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the degree of polymerization of cellulose nanofibers by largely preserving native structure of wood fibers.
    Zhou J; Fang Z; Chen K; Cui J; Yang D; Qiu X
    Carbohydr Polym; 2022 Nov; 296():119919. PubMed ID: 36087974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organocatalyzed ring opening polymerization of lactide from the surface of cellulose nanofibrils.
    Lalanne-Tisné M; Mees MA; Eyley S; Zinck P; Thielemans W
    Carbohydr Polym; 2020 Dec; 250():116974. PubMed ID: 33049866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of cellulose-graft-poly(ɛ-caprolactone) nanomicelles by homogeneous ROP in ionic liquid.
    Guo Y; Wang X; Shen Z; Shu X; Sun R
    Carbohydr Polym; 2013 Jan; 92(1):77-83. PubMed ID: 23218268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of poly(DL-lactide)-grafted gelatins as bioabsorbable amphiphilic polymers.
    Ma J; Cao H; Li Y; Li Y
    J Biomater Sci Polym Ed; 2002; 13(1):67-80. PubMed ID: 12003076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization.
    Yuan W; Yuan J; Zhang F; Xie X
    Biomacromolecules; 2007 Apr; 8(4):1101-8. PubMed ID: 17326679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose nanocrystals modification by grafting from ring opening polymerization of a cyclic carbonate.
    Lalanne-Tisné M; Eyley S; De Winter J; Favrelle-Huret A; Thielemans W; Zinck P
    Carbohydr Polym; 2022 Nov; 295():119840. PubMed ID: 35988996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Characterization of Cellulose Diacetate-Graft-Polylactide via Solvent-Free Melt Ring-Opening Graft Copolymerization.
    Zhao S; Li J; Wu L; Hua M; Jiang C; Pan Y; Yao L; Xu S; Ge J; Pan G
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid rigid/soft and biologic/synthetic materials: polymers grafted onto cellulose microcrystals.
    Harrisson S; Drisko GL; Malmström E; Hult A; Wooley KL
    Biomacromolecules; 2011 Apr; 12(4):1214-23. PubMed ID: 21381766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.