These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 37793548)
1. Comparative analysis of the capability of the extended biotic ligand model and machine learning approaches to predict arsenate toxicity. Park J; Yang JH; Jung J; Kwak IS; Choe JK; An J Chemosphere; 2023 Dec; 344():140350. PubMed ID: 37793548 [TBL] [Abstract][Full Text] [Related]
2. Extension of biotic ligand model to account for the effects of pH and phosphate in accurate prediction of arsenate toxicity. An J; Jeong B; Nam K J Hazard Mater; 2020 Mar; 385():121619. PubMed ID: 31757723 [TBL] [Abstract][Full Text] [Related]
3. Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data. Jho EH; An J; Nam K Environ Toxicol Chem; 2011 Jul; 30(7):1697-703. PubMed ID: 21538486 [TBL] [Abstract][Full Text] [Related]
4. Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential. An J Toxics; 2022 Feb; 10(2):. PubMed ID: 35202264 [TBL] [Abstract][Full Text] [Related]
5. Investigating and modeling the toxicity of arsenate on wheat root elongation: Assessing the effects of pH, sulfate and phosphate. Li M; Song N; Song X; Liu J; Su B; Chen X; Guo X; Li M; Zong Q Ecotoxicol Environ Saf; 2022 Jul; 239():113633. PubMed ID: 35598446 [TBL] [Abstract][Full Text] [Related]
6. Toxicity Assessment of Binary Metal Mixtures (Copper-Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model. Liu A; Li J; Li M; Niu XY; Wang J Arch Environ Contam Toxicol; 2017 Feb; 72(2):312-319. PubMed ID: 28050624 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil. An J; Jeong S; Moon HS; Jho EH; Nam K J Hazard Mater; 2012 Feb; 203-204():69-76. PubMed ID: 22197563 [TBL] [Abstract][Full Text] [Related]
8. Effective Modeling Framework for Quantifying the Potential Impacts of Coexisting Anions on the Toxicity of Arsenate, Selenite, and Vanadate. Ji J; He E; Qiu H; Peijnenburg WJGM; Van Gestel CAM; Cao X Environ Sci Technol; 2020 Feb; 54(4):2379-2388. PubMed ID: 31976662 [TBL] [Abstract][Full Text] [Related]
9. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat. Wang X; Luo X; Wang Q; Liu Y; Naidu R Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486 [TBL] [Abstract][Full Text] [Related]
10. Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil. Lamb DT; Kader M; Wang L; Choppala G; Rahman MM; Megharaj M; Naidu R Environ Sci Technol; 2016 Dec; 50(23):13062-13069. PubMed ID: 27797507 [TBL] [Abstract][Full Text] [Related]
11. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH. Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297 [TBL] [Abstract][Full Text] [Related]
12. Monitoring Aquaculture Water Quality: Design of an Early Warning Sensor with da Silva LFBA; Yang Z; Pires NMM; Dong T; Teien HC; Storebakken T; Salbu B Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30158465 [TBL] [Abstract][Full Text] [Related]
13. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model. Hatano A; Shoji R Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895 [TBL] [Abstract][Full Text] [Related]
14. Acute toxicity of arsenic to Aliivibrio fischeri (Microtox bioassay) as influenced by potential competitive-protective agents. Rubinos DA; Calvo V; Iglesias L; Barral MT Environ Sci Pollut Res Int; 2014; 21(14):8631-44. PubMed ID: 24705848 [TBL] [Abstract][Full Text] [Related]
15. Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors. Kang X; Chen Z; Zhao Y J Hazard Mater; 2020 Oct; 397():122761. PubMed ID: 32388091 [TBL] [Abstract][Full Text] [Related]
16. Extension of a biotic ligand model for predicting the toxicity of metalloid selenate to wheat: The effects of pH, phosphate and sulphate. Wang F; Wang X; Chen Q; Song N Chemosphere; 2021 Feb; 264(Pt 1):128424. PubMed ID: 33032220 [TBL] [Abstract][Full Text] [Related]
17. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM). Hatano A; Shoji R Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):25-32. PubMed ID: 19689929 [TBL] [Abstract][Full Text] [Related]
18. The biotic ligand model for plants and metals: technical challenges for field application. Antunes PM; Berkelaar EJ; Boyle D; Hale BA; Hendershot W; Voigt A Environ Toxicol Chem; 2006 Mar; 25(3):875-82. PubMed ID: 16566174 [TBL] [Abstract][Full Text] [Related]
19. Use of Multiple Linear Regression Models for Setting Water Quality Criteria for Copper: A Complementary Approach to the Biotic Ligand Model. Brix KV; DeForest DK; Tear L; Grosell M; Adams WJ Environ Sci Technol; 2017 May; 51(9):5182-5192. PubMed ID: 28409924 [TBL] [Abstract][Full Text] [Related]
20. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Niyogi S; Wood CM Environ Sci Technol; 2004 Dec; 38(23):6177-92. PubMed ID: 15597870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]