These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37793598)

  • 1. Methane mitigation in ruminants with structural analogues and other chemical compounds targeting archaeal methanogenesis pathways.
    Patra AK; Puchala R
    Biotechnol Adv; 2023 Dec; 69():108268. PubMed ID: 37793598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation.
    Beauchemin KA; Ungerfeld EM; Eckard RJ; Wang M
    Animal; 2020 Mar; 14(S1):s2-s16. PubMed ID: 32024560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows.
    Pitta D; Indugu N; Narayan K; Hennessy M
    J Dairy Sci; 2022 Oct; 105(10):8569-8585. PubMed ID: 35346473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI
    ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants.
    Li QS; Wang R; Ma ZY; Zhang XM; Jiao JZ; Zhang ZG; Ungerfeld EM; Yi KL; Zhang BZ; Long L; Long Y; Tao Y; Huang T; Greening C; Tan ZL; Wang M
    ISME J; 2022 Nov; 16(11):2535-2546. PubMed ID: 35931768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions.
    Leahy SC; Kelly WJ; Altermann E; Ronimus RS; Yeoman CJ; Pacheco DM; Li D; Kong Z; McTavish S; Sang C; Lambie SC; Janssen PH; Dey D; Attwood GT
    PLoS One; 2010 Jan; 5(1):e8926. PubMed ID: 20126622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation.
    Lan W; Yang C
    Sci Total Environ; 2019 Mar; 654():1270-1283. PubMed ID: 30841400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
    McAllister TA; Meale SJ; Valle E; Guan LL; Zhou M; Kelly WJ; Henderson G; Attwood GT; Janssen PH
    J Anim Sci; 2015 Apr; 93(4):1431-49. PubMed ID: 26020166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New aspects and strategies for methane mitigation from ruminants.
    Kumar S; Choudhury PK; Carro MD; Griffith GW; Dagar SS; Puniya M; Calabro S; Ravella SR; Dhewa T; Upadhyay RC; Sirohi SK; Kundu SS; Wanapat M; Puniya AK
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):31-44. PubMed ID: 24247990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Methanogens and methane production in the digestive systems of nonruminant farm animals.
    Misiukiewicz A; Gao M; Filipiak W; Cieslak A; Patra AK; Szumacher-Strabel M
    Animal; 2021 Jan; 15(1):100060. PubMed ID: 33516013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.
    Patra AK
    Environ Monit Assess; 2012 Apr; 184(4):1929-52. PubMed ID: 21547374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations.
    Patra AK; Yu Z
    J Appl Microbiol; 2015 Jul; 119(1):127-38. PubMed ID: 25846054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial ecosystem and methanogenesis in ruminants.
    Morgavi DP; Forano E; Martin C; Newbold CJ
    Animal; 2010 Jul; 4(7):1024-36. PubMed ID: 22444607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Methanogens and manipulation of methane production in the rumen].
    Guo YQ; Hu WL; Liu JX
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):145-8. PubMed ID: 15847184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylotrophic methanogens everywhere - physiology and ecology of novel players in global methane cycling.
    Söllinger A; Urich T
    Biochem Soc Trans; 2019 Dec; 47(6):1895-1907. PubMed ID: 31819955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination effects of nitrocompounds, pyromellitic diimide, and 2-bromoethanesulfonate on in vitro ruminal methane production and fermentation of a grain-rich feed.
    Zhang DF; Yang HJ
    J Agric Food Chem; 2012 Jan; 60(1):364-71. PubMed ID: 22129139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows.
    Pitta DW; Indugu N; Melgar A; Hristov A; Challa K; Vecchiarelli B; Hennessy M; Narayan K; Duval S; Kindermann M; Walker N
    Microbiome; 2022 Sep; 10(1):146. PubMed ID: 36100950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects of 3-Nitrooxypropanol with Fumarate in the Regulation of Propionate Formation and Methanogenesis in Dairy Cows
    Liu Z; Wang K; Nan X; Cai M; Yang L; Xiong B; Zhao Y
    Appl Environ Microbiol; 2022 Mar; 88(6):e0190821. PubMed ID: 35080908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen.
    Patra AK; Saxena J
    Phytochemistry; 2010 Aug; 71(11-12):1198-222. PubMed ID: 20570294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities.
    Lettat A; Hassanat F; Benchaar C
    J Dairy Sci; 2013 Aug; 96(8):5237-48. PubMed ID: 23769352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.