BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 37793776)

  • 1. Regulation of alternative splicing and polyadenylation in neurons.
    Lee S; Aubee JI; Lai EC
    Life Sci Alliance; 2023 Dec; 6(12):. PubMed ID: 37793776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ELAV/Hu RNA binding proteins determine multiple programs of neural alternative splicing.
    Lee S; Wei L; Zhang B; Goering R; Majumdar S; Wen J; Taliaferro JM; Lai EC
    PLoS Genet; 2021 Apr; 17(4):e1009439. PubMed ID: 33826609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splicing Busts a Move: Isoform Switching Regulates Migration.
    Mitra M; Lee HN; Coller HA
    Trends Cell Biol; 2020 Jan; 30(1):74-85. PubMed ID: 31810769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative isoform regulation in human tissue transcriptomes.
    Wang ET; Sandberg R; Luo S; Khrebtukova I; Zhang L; Mayr C; Kingsmore SF; Schroth GP; Burge CB
    Nature; 2008 Nov; 456(7221):470-6. PubMed ID: 18978772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments.
    Ciolli Mattioli C; Rom A; Franke V; Imami K; Arrey G; Terne M; Woehler A; Akalin A; Ulitsky I; Chekulaeva M
    Nucleic Acids Res; 2019 Mar; 47(5):2560-2573. PubMed ID: 30590745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landscape and regulation of alternative splicing and alternative polyadenylation in a plant pathogenic fungus.
    Lu P; Chen D; Qi Z; Wang H; Chen Y; Wang Q; Jiang C; Xu JR; Liu H
    New Phytol; 2022 Jul; 235(2):674-689. PubMed ID: 35451076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative poly(A) site-selection regulates the production of alternatively spliced vesl-1/homer1 isoforms that encode postsynaptic scaffolding proteins.
    Niibori Y; Hayashi F; Hirai K; Matsui M; Inokuchi K
    Neurosci Res; 2007 Mar; 57(3):399-410. PubMed ID: 17196693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AltTrans: transcript pattern variants annotated for both alternative splicing and alternative polyadenylation.
    Le Texier V; Riethoven JJ; Kumanduri V; Gopalakrishnan C; Lopez F; Gautheret D; Thanaraj TA
    BMC Bioinformatics; 2006 Mar; 7():169. PubMed ID: 16556303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing.
    Ma W; Chen C; Liu Y; Zeng M; Meyers BC; Li J; Xia R
    New Phytol; 2018 Mar; 217(4):1535-1550. PubMed ID: 29218722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative Splicing Landscape of Small Brown Planthopper and Different Response of JNK2 Isoforms to Rice Stripe Virus Infection.
    Tong L; Chen X; Wang W; Xiao Y; Yu J; Lu H; Cui F
    J Virol; 2022 Jan; 96(2):e0171521. PubMed ID: 34757837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FUS-mediated regulation of alternative RNA processing in neurons: insights from global transcriptome analysis.
    Masuda A; Takeda J; Ohno K
    Wiley Interdiscip Rev RNA; 2016 May; 7(3):330-40. PubMed ID: 26822113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple strategies, including 6mA methylation, affecting plant alternative splicing in allopolyploid peanut.
    Wang L; Chen H; Zhuang Y; Chen K; Zhang C; Cai T; Yang Q; Fu H; Chen X; Chitkineni A; Wang X; Varshney RK; Zhuang W
    Plant Biotechnol J; 2024 Jun; 22(6):1681-1702. PubMed ID: 38294334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues.
    Reyes A; Huber W
    Nucleic Acids Res; 2018 Jan; 46(2):582-592. PubMed ID: 29202200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies.
    Reddy ASN; Huang J; Syed NH; Ben-Hur A; Dong S; Gu L
    Biochem Soc Trans; 2020 Dec; 48(6):2399-2414. PubMed ID: 33196096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease.
    Batra R; Charizanis K; Manchanda M; Mohan A; Li M; Finn DJ; Goodwin M; Zhang C; Sobczak K; Thornton CA; Swanson MS
    Mol Cell; 2014 Oct; 56(2):311-322. PubMed ID: 25263597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of polyadenylation in health and disease.
    Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A
    Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation.
    Davis R; Shi Y
    J Zhejiang Univ Sci B; 2014 May; 15(5):429-37. PubMed ID: 24793760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles.
    Blazie SM; Babb C; Wilky H; Rawls A; Park JG; Mangone M
    BMC Biol; 2015 Jan; 13():4. PubMed ID: 25601023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exons of Leukemia Suppressor Genes: Creative Assembly Required.
    Asnani M; Thomas-Tikhonenko A
    Trends Cancer; 2018 Dec; 4(12):796-798. PubMed ID: 30470300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunoglobulin heavy chain gene regulation through polyadenylation and splicing competition.
    Peterson ML
    Wiley Interdiscip Rev RNA; 2011; 2(1):92-105. PubMed ID: 21956971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.