BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 37794121)

  • 1. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent neural networks as versatile tools of neuroscience research.
    Barak O
    Curr Opin Neurobiol; 2017 Oct; 46():1-6. PubMed ID: 28668365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.
    Bitzer S; Kiebel SJ
    Biol Cybern; 2012 Jul; 106(4-5):201-17. PubMed ID: 22581026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks.
    Jarne C; Laje R
    J Comput Neurosci; 2023 Nov; 51(4):407-431. PubMed ID: 37561278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Recurrent Neural Network-Based Methods in Computational Physiology.
    Mao S; Sejdic E
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):6983-7003. PubMed ID: 35130174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training deep neural density estimators to identify mechanistic models of neural dynamics.
    Gonçalves PJ; Lueckmann JM; Deistler M; Nonnenmacher M; Öcal K; Bassetto G; Chintaluri C; Podlaski WF; Haddad SA; Vogels TP; Greenberg DS; Macke JH
    Elife; 2020 Sep; 9():. PubMed ID: 32940606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling.
    Gajamannage K; Jayathilake DI; Park Y; Bollt EM
    Chaos; 2023 Jan; 33(1):013109. PubMed ID: 36725658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research.
    Macpherson T; Churchland A; Sejnowski T; DiCarlo J; Kamitani Y; Takahashi H; Hikida T
    Neural Netw; 2021 Dec; 144():603-613. PubMed ID: 34649035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances at the Interface of Neuroscience and Artificial Neural Networks.
    Cohen Y; Engel TA; Langdon C; Lindsay GW; Ott T; Peters MAK; Shine JM; Breton-Provencher V; Ramaswamy S
    J Neurosci; 2022 Nov; 42(45):8514-8523. PubMed ID: 36351830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI.
    Koppe G; Toutounji H; Kirsch P; Lis S; Durstewitz D
    PLoS Comput Biol; 2019 Aug; 15(8):e1007263. PubMed ID: 31433810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural circuits as computational dynamical systems.
    Sussillo D
    Curr Opin Neurobiol; 2014 Apr; 25():156-63. PubMed ID: 24509098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning framework for neuroscience.
    Richards BA; Lillicrap TP; Beaudoin P; Bengio Y; Bogacz R; Christensen A; Clopath C; Costa RP; de Berker A; Ganguli S; Gillon CJ; Hafner D; Kepecs A; Kriegeskorte N; Latham P; Lindsay GW; Miller KD; Naud R; Pack CC; Poirazi P; Roelfsema P; Sacramento J; Saxe A; Scellier B; Schapiro AC; Senn W; Wayne G; Yamins D; Zenke F; Zylberberg J; Therien D; Kording KP
    Nat Neurosci; 2019 Nov; 22(11):1761-1770. PubMed ID: 31659335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the next generation of recurrent network models for cognitive neuroscience.
    Yang GR; Molano-Mazón M
    Curr Opin Neurobiol; 2021 Oct; 70():182-192. PubMed ID: 34844122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural population dynamics of computing with synaptic modulations.
    Aitken K; Mihalas S
    Elife; 2023 Feb; 12():. PubMed ID: 36820526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. If deep learning is the answer, what is the question?
    Saxe A; Nelli S; Summerfield C
    Nat Rev Neurosci; 2021 Jan; 22(1):55-67. PubMed ID: 33199854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.