BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 37794121)

  • 21. Neural population geometry: An approach for understanding biological and artificial neural networks.
    Chung S; Abbott LF
    Curr Opin Neurobiol; 2021 Oct; 70():137-144. PubMed ID: 34801787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.
    Durstewitz D
    PLoS Comput Biol; 2017 Jun; 13(6):e1005542. PubMed ID: 28574992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Grounding neuroscience in behavioral changes using artificial neural networks.
    Lindsay GW
    Curr Opin Neurobiol; 2024 Feb; 84():102816. PubMed ID: 38052111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Guided Tutorial on Modelling Human Event-Related Potentials with Recurrent Neural Networks.
    O'Reilly JA; Wehrman J; Sowman PF
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emergent mechanisms of evidence integration in recurrent neural networks.
    Quax S; van Gerven M
    PLoS One; 2018; 13(10):e0205676. PubMed ID: 30325970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Curriculum learning inspired by behavioral shaping trains neural networks to adopt animal-like decision making strategies.
    Hocker D; Constantinople CM; Savin C
    bioRxiv; 2024 Feb; ():. PubMed ID: 38318205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expressive architectures enhance interpretability of dynamics-based neural population models.
    Sedler AR; Versteeg C; Pandarinath C
    Neuron Behav Data Anal Theory; 2023; 2023():. PubMed ID: 38699512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physics guided neural networks for modelling of non-linear dynamics.
    Robinson H; Pawar S; Rasheed A; San O
    Neural Netw; 2022 Oct; 154():333-345. PubMed ID: 35932722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies.
    Soo WWM; Goudar V; Wang XJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the Relationship Between Latent Linear Dynamical Systems and Low-Rank Recurrent Neural Network Models.
    Valente A; Ostojic S; Pillow JW
    Neural Comput; 2022 Aug; 34(9):1871-1892. PubMed ID: 35896161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Before and beyond the Wilson-Cowan equations.
    Chow CC; Karimipanah Y
    J Neurophysiol; 2020 May; 123(5):1645-1656. PubMed ID: 32186441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Psychiatric Illnesses as Disorders of Network Dynamics.
    Durstewitz D; Huys QJM; Koppe G
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2021 Sep; 6(9):865-876. PubMed ID: 32249208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fractal Geometry Meets Computational Intelligence: Future Perspectives.
    Livi L; Sadeghian A; Di Ieva A
    Adv Neurobiol; 2024; 36():983-997. PubMed ID: 38468072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data.
    McDermott PL; Wikle CK
    Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Representations and generalization in artificial and brain neural networks.
    Li Q; Sorscher B; Sompolinsky H
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311805121. PubMed ID: 38913896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks.
    Sussillo D; Barak O
    Neural Comput; 2013 Mar; 25(3):626-49. PubMed ID: 23272922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Universality and individuality in neural dynamics across large populations of recurrent networks.
    Maheswaranathan N; Williams AH; Golub MD; Ganguli S; Sussillo D
    Adv Neural Inf Process Syst; 2019 Dec; 2019():15629-15641. PubMed ID: 32782422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of dynamical systems through deep learning.
    Rajendra P; Brahmajirao V
    Biophys Rev; 2020 Nov; 12(6):1311-20. PubMed ID: 33222032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.