These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3779426)

  • 21. The origin of projections from the medullary reticular formation to the spinal cord, the diencephalon and the cerebellum at different stages of development in the North American opossum: studies using single and double labeling techniques.
    Martin GF; Cabana T; Waltzer R
    Neuroscience; 1988 Apr; 25(1):87-96. PubMed ID: 3393288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental plasticity of reticulospinal and vestibulospinal axons in the north American opossum, Didelphis virginiana.
    Wang XM; Qin YQ; Xu XM; Martin GF
    J Comp Neurol; 1994 Nov; 349(2):288-302. PubMed ID: 7860784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana).
    Wang XM; Qin YQ; Terman JR; Martin GF
    Brain Res Dev Brain Res; 1997 Feb; 98(2):151-63. PubMed ID: 9051256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The terminations of corticospinal tract axons in the macaque monkey.
    Ralston DD; Ralston HJ
    J Comp Neurol; 1985 Dec; 242(3):325-37. PubMed ID: 2418074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The postnatal spatial and temporal development of corticospinal projections in cats.
    Alisky JM; Swink TD; Tolbert DL
    Exp Brain Res; 1992; 88(2):265-76. PubMed ID: 1374346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anatomical evidence for an ipsilateral rubrospinal pathway and for direct rubrospinal projections to motoneurons in the cat.
    Holstege G
    Neurosci Lett; 1987 Mar; 74(3):269-74. PubMed ID: 3561881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a lack of distinct rubrospinal somatotopy in the North American opossum and for collateral innervation of the cervical and lumbar enlargements by single rubral neurons.
    Martin GF; Cabana T; Humbertson AO
    J Comp Neurol; 1981 Sep; 201(2):255-63. PubMed ID: 6169748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The origins of supraspinal projections to lumbosacral and cervical levels of the spinal cord in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Holst MC; Ho RH; Martin GF
    Brain Behav Evol; 1991; 38(6):273-89. PubMed ID: 1684917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organization of forebrain projections from the medullary reticular formation in the North American opossum. Evidence for connectional heterogeneity.
    Waltzer R; Martin GF
    Brain Behav Evol; 1988; 31(2):57-81. PubMed ID: 2450621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin of the rubrospinal tract of the rat.
    Murray HM; Gurule ME
    Neurosci Lett; 1979 Sep; 14(1):19-23. PubMed ID: 530486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An electron microscopic study of rubrospinal projections to the lumbar spinal cord of the opossum.
    Goode GE; Sreesai M
    Brain Res; 1978 Mar; 143(1):61-70. PubMed ID: 630404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Axotomized rubrospinal neurons rescued by fetal spinal cord transplants maintain axon collaterals to rostral CNS targets.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):13-25. PubMed ID: 9398446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The response of rubrospinal neurons to axotomy in the adult opossum, Didelphis virginiana.
    Xu XM; Martin GF
    Exp Neurol; 1990 Apr; 108(1):46-54. PubMed ID: 2318287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrastructural study of remodeled rubral afferents following neonatal lesions in the rat.
    Naus CG; Flumerfelt BA; Hrycyshyn AW
    J Comp Neurol; 1987 May; 259(1):131-9. PubMed ID: 2438315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of the red nucleus and rubrospinal tract.
    ten Donkelaar HJ
    Behav Brain Res; 1988; 28(1-2):9-20. PubMed ID: 3289562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology of single neurones in the cerebello-rubrospinal system.
    Shinoda Y; Futami T; Mitoma H; Yokota J
    Behav Brain Res; 1988; 28(1-2):59-64. PubMed ID: 3382520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth of dorsal spinocerebellar axons through a lesion of their spinal pathway during early development in the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1996 May; 93(1-2):33-48. PubMed ID: 8804690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The development of myelin in the spinal cord of the North American opossum and its possible role in loss of rubrospinal plasticity. A study using myelin basic protein and galactocerebroside immuno-histochemistry.
    Ghooray GT; Martin GF
    Brain Res Dev Brain Res; 1993 Mar; 72(1):67-74. PubMed ID: 7680969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an astrocytic response to lesions of the spinal cord in the North American opossum: an immunohistochemical study using anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):10-7. PubMed ID: 8244527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibitory synaptic input to identified rubrospinal neurons in Macaca fascicularis: an electron microscopic study using a combined immuno-GABA-gold technique and the retrograde transport of WGA-HRP.
    Ralston DD; Milroy AM
    J Comp Neurol; 1992 Jun; 320(1):97-109. PubMed ID: 1383282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.