These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37794279)
1. Pathogenicity analysis and comparative genomics reveal the different infection strategies between the generalist Metarhizium anisopliae and the specialist Metarhizium acridum. Du Y; Li J; Chen S; Xia Y; Jin K Pest Manag Sci; 2024 Feb; 80(2):820-836. PubMed ID: 37794279 [TBL] [Abstract][Full Text] [Related]
2. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. Gao Q; Jin K; Ying SH; Zhang Y; Xiao G; Shang Y; Duan Z; Hu X; Xie XQ; Zhou G; Peng G; Luo Z; Huang W; Wang B; Fang W; Wang S; Zhong Y; Ma LJ; St Leger RJ; Zhao GP; Pei Y; Feng MG; Xia Y; Wang C PLoS Genet; 2011 Jan; 7(1):e1001264. PubMed ID: 21253567 [TBL] [Abstract][Full Text] [Related]
3. The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. Pattemore JA; Hane JK; Williams AH; Wilson BA; Stodart BJ; Ash GJ BMC Genomics; 2014 Aug; 15(1):660. PubMed ID: 25102932 [TBL] [Abstract][Full Text] [Related]
4. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust. Jiang ZY; Ligoxygakis P; Xia YX Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346 [TBL] [Abstract][Full Text] [Related]
5. Disruption of an adenylate-forming reductase required for conidiation, increases virulence of the insect pathogenic fungus Metarhizium acridum by enhancing cuticle invasion. Guo H; Wang H; Keyhani NO; Xia Y; Peng G Pest Manag Sci; 2020 Feb; 76(2):758-768. PubMed ID: 31392798 [TBL] [Abstract][Full Text] [Related]
6. Transformation of glycerate kinase (GLYK) into Metarhizium acridum increases virulence to locust. Tong X; Wang Y; Li J; Hu S; Yang P; Kang L Pest Manag Sci; 2021 Mar; 77(3):1465-1475. PubMed ID: 33128436 [TBL] [Abstract][Full Text] [Related]
7. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Wei Q; Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863 [TBL] [Abstract][Full Text] [Related]
8. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. He M; Hu J; Xia Y Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419 [TBL] [Abstract][Full Text] [Related]
9. Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. Sbaraini N; Guedes RL; Andreis FC; Junges Â; de Morais GL; Vainstein MH; de Vasconcelos AT; Schrank A BMC Genomics; 2016 Oct; 17(Suppl 8):736. PubMed ID: 27801295 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related]
11. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis. Peng G; Xia Y J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1659-66. PubMed ID: 25168679 [TBL] [Abstract][Full Text] [Related]
12. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
13. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793 [TBL] [Abstract][Full Text] [Related]
14. Effects of the Entomopathogenic Fungus Metarhizium anisopliae on the Mortality and Immune Response of Locusta migratoria. Jiang W; Peng Y; Ye J; Wen Y; Liu G; Xie J Insects; 2019 Dec; 11(1):. PubMed ID: 31906210 [TBL] [Abstract][Full Text] [Related]
15. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F Hu J; Xia Y Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423 [TBL] [Abstract][Full Text] [Related]
16. MaAzaR Influences Virulence of Hong G; Wang S; Xia Y; Peng G J Fungi (Basel); 2024 Aug; 10(8):. PubMed ID: 39194890 [TBL] [Abstract][Full Text] [Related]
17. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related]
18. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Zhang M; Wei Q; Xia Y; Jin K Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639 [TBL] [Abstract][Full Text] [Related]
19. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Freimoser FM; Screen S; Bagga S; Hu G; St Leger RJ Microbiology (Reading); 2003 Jan; 149(Pt 1):239-47. PubMed ID: 12576597 [TBL] [Abstract][Full Text] [Related]
20. Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. Cao Y; Li M; Xia Y J Invertebr Pathol; 2011 Sep; 108(1):7-12. PubMed ID: 21683706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]