These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3779439)

  • 1. Characterization of acetylcholinesterase isoforms in septal and hippocampal cultures and cocultures.
    Schegg KM; Futamachi KJ; Peacock JH
    Brain Res; 1986 Dec; 395(2):221-30. PubMed ID: 3779439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choline acetyltransferase in organotypic cultures of rat septum and hippocampus.
    Keller F; Rimvall K; Waser PG
    Neurosci Lett; 1983 Dec; 42(3):273-8. PubMed ID: 6664633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of cholinergic projections in organotypic cultures of rat septum, hippocampus and cerebellum.
    Rimvall K; Keller F; Waser PG
    Brain Res; 1985 Apr; 351(2):267-78. PubMed ID: 3995351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampal neurotrophic factors influence the perikaryal size of septal acetylcholinesterase-containing neurons in culture.
    Harada K; Shingai R; Ito H
    Brain Res Dev Brain Res; 1990 Sep; 55(2):293-7. PubMed ID: 2253329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Veratridine-induced breakdown of cytosolic acetylcholine in rat hippocampal minces: an intraterminal form of acetylcholinesterase or choline O-acetyltransferase?
    Carroll PT; Badamchian M; Craig P; Lyness WH
    Brain Res; 1986 Sep; 383(1-2):83-99. PubMed ID: 3768708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotrophic effects of hippocampal target cells on developing septal cholinergic neurons in culture.
    Hsiang J; Wainer BH; Shalaby IA; Hoffmann PC; Heller A; Heller BR
    Neuroscience; 1987 May; 21(2):333-43. PubMed ID: 3614637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholinesterase histochemistry of the septal region in rat and human: distribution of enzyme activity.
    Harkmark W; Mellgren SI; Srebro B
    Brain Res; 1975 Sep; 95(2-3):281-9. PubMed ID: 1156876
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanisms of septal lamination in the developing hippocampus revealed by outgrowth of fibers from septal implants. I. Positional and temporal factors.
    Lewis ER; Cotman CW
    Brain Res; 1980 Sep; 196(2):307-30. PubMed ID: 7397534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The effect of nerve growth factor on cholinergic neurons in dissociated cultures of the septum pellucidum].
    Isaev NK; Viktorov IV
    Biull Eksp Biol Med; 1991 Mar; 111(3):305-6. PubMed ID: 2054513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in acetylcholinesterase isoenzyme pattern of hippocampus after septal lesions in rat brain.
    Oderfeld-Nowak B; Skangiel-Kramska J
    J Neurochem; 1976 Nov; 27(5):1241-4. PubMed ID: 12170614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotransmitter characteristics of brain grafts: striatal and septal tissues form the same laminated input to the hippocampus.
    Lewis ER; Cotman CW
    Neuroscience; 1983 Jan; 8(1):57-66. PubMed ID: 6132349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in acetylcholinesterase and distribution of degenerating fibres in the hippocampal region after septal lesions in the rat.
    Mellgren SI; Srebro B
    Brain Res; 1973 Mar; 52():19-36. PubMed ID: 4573427
    [No Abstract]   [Full Text] [Related]  

  • 13. Relationship between changes in the content of acetylcholine and the activities of acetylcholinesterase and choline acetyltransferase in the hippocampus of the rat after septal lesions.
    Oderfeld-Nowak B; Potempska A
    Acta Neurobiol Exp (Wars); 1977; 37(3):137-49. PubMed ID: 899888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the time course of changes in hippocampal acetylcholinesterase and choline acetyltransferase activities after various septal lesions in the rat: return of enzymic activity after extensive medioventral lesions.
    Oderfeld-Nowak B; Potempska A
    Neuroscience; 1977; 2(4):641-8. PubMed ID: 917288
    [No Abstract]   [Full Text] [Related]  

  • 15. Changes in postnatal development of acetylcholinesterase in the hippocampal region after early septal lesions in the rat.
    Srebro B; Mellgren SI
    Brain Res; 1974 Oct; 79(1):119-31. PubMed ID: 4471677
    [No Abstract]   [Full Text] [Related]  

  • 16. Differential effects of denervation on acetylcholinesterase activity in parasympathetic and sympathetic ganglia of the frog, Rana pipiens.
    Streichert LC; Sargent PB
    J Neurobiol; 1990 Sep; 21(6):938-49. PubMed ID: 2077105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of rhythmically bursting neurons in rat medial septum following selective lesion of septohippocampal cholinergic system.
    Apartis E; Poindessous-Jazat FR; Lamour YA; Bassant MH
    J Neurophysiol; 1998 Apr; 79(4):1633-42. PubMed ID: 9535934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABAergic neurons in the septum of the lizard, Podarcis hispanica.
    Schwerdtfeger WK; López-García C; Martinez-Guijarro FJ; Roberto PL
    Brain Res; 1986 Oct; 384(1):184-8. PubMed ID: 2431743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of acetylcholinesterase in individual neurons in the leech central nervous system.
    Wallace BG; Gillon JW
    J Neurosci; 1982 Aug; 2(8):1108-18. PubMed ID: 7108585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of choline acetyltransferase activity in coculture of rat septal and hippocampal neurons.
    Akaneya Y; Takahashi M; Tsukui H; Hatanaka H
    Brain Res; 1994 Apr; 642(1-2):38-46. PubMed ID: 8032901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.