These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37794582)
21. Interception of spray drift by border structures. Part 1: wind tunnel experiments. De Schampheleire M; Nuyttens D; Dekeyser D; Verboven P; Cornelis W; Gabriels D; Spanoghe P Commun Agric Appl Biol Sci; 2008; 73(4):719-22. PubMed ID: 19226819 [TBL] [Abstract][Full Text] [Related]
22. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system. Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339 [TBL] [Abstract][Full Text] [Related]
23. Direct and indirect drift assessment means. Part 3: field drift experiments. Nuyttens D; De Schampheleire M; Baetens K; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):763-7. PubMed ID: 19226826 [TBL] [Abstract][Full Text] [Related]
24. Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements. Arvidsson T; Bergström L; Kreuger J Pest Manag Sci; 2011 Jun; 67(6):725-33. PubMed ID: 21445941 [TBL] [Abstract][Full Text] [Related]
25. Reducing pesticide spraying drift by folate/Zn Song Y; Zhu F; Cao C; Cao L; Li F; Zhao P; Huang Q Pest Manag Sci; 2021 Nov; 77(11):5278-5285. PubMed ID: 34302708 [TBL] [Abstract][Full Text] [Related]
26. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
27. Adjuvant use for the management of pesticide drift, leaching and runoff. Hewitt AJ Pest Manag Sci; 2024 Oct; 80(10):4819-4827. PubMed ID: 38895885 [TBL] [Abstract][Full Text] [Related]
28. Experimental study on dust removal optimization of shearer external spray in air velocity. Zhang J; Sun T; Yang X; Liu J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(2):181-189. PubMed ID: 33370155 [TBL] [Abstract][Full Text] [Related]
30. Spray drift as affected by meteorological conditions. Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942 [TBL] [Abstract][Full Text] [Related]
31. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies. Miranda-Fuentes A; Rodríguez-Lizana A; Gil E; Agüera-Vega J; Gil-Ribes JA Sci Total Environ; 2015 Dec; 537():250-9. PubMed ID: 26282759 [TBL] [Abstract][Full Text] [Related]
32. Drift studies--comparison of field and wind tunnel experiments. Stadler R; Regenauer W Commun Agric Appl Biol Sci; 2005; 70(4):971-3. PubMed ID: 16628944 [TBL] [Abstract][Full Text] [Related]
33. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469 [TBL] [Abstract][Full Text] [Related]
34. Back pressure generated by downwash and crosswind on spatial atomization characteristics during UAV spraying: CFD analysis and verification. Feng H; Xu P; Yang S; Zheng Y; Li W; Liu W; Zhao H; Jiang S Pest Manag Sci; 2024 Mar; 80(3):1348-1360. PubMed ID: 37915287 [TBL] [Abstract][Full Text] [Related]
35. Analysis of droplet size uniformity and selection of spray parameters based on the biological optimum particle size theory. Chen C; Li S; Wu X; Wang Y; Kang F Environ Res; 2022 Mar; 204(Pt B):112076. PubMed ID: 34555405 [TBL] [Abstract][Full Text] [Related]
36. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
37. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
38. Real-time particle monitoring of pesticide drift from an axial fan airblast orchard sprayer. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E J Expo Sci Environ Epidemiol; 2019 Apr; 29(3):397-405. PubMed ID: 30425317 [TBL] [Abstract][Full Text] [Related]
39. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
40. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]