These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37794815)

  • 1. Surfactant-mediated enhanced FRET from a quantum-dot complex for ratiometric sensing of food colorants.
    Singha S; Manna M; Das P; Pramanik S; Bhandari S
    Chem Commun (Camb); 2023 Oct; 59(84):12653-12656. PubMed ID: 37794815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant-Assisted Förster Resonance Energy Transfer from a Quantum Dot Complex for Highly Stable White Light Emission.
    Singha S; Manna M; Pramanik S; Bhandari S
    J Phys Chem Lett; 2024 May; 15(19):5315-5322. PubMed ID: 38722748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Ratiometric and Visual Sensing of Phosphate by White Light Emitting Quantum Dot Complex.
    Manna M; Roy S; Bhandari S; Chattopadhyay A
    Langmuir; 2021 May; 37(18):5506-5512. PubMed ID: 33928783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An all-graphene quantum dot Förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker.
    Bharathi G; Lin F; Liu L; Ohulchanskyy TY; Hu R; Qu J
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111458. PubMed ID: 33246782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of different donor-acceptor structures via Förster Resonance Energy Transfer (FRET) in quantum-dot-perylene bisimide assemblies.
    Kowerko D; Krause S; Amecke N; Abdel-Mottaleb M; Schuster J; Von Borczyskowski C
    Int J Mol Sci; 2009 Dec; 10(12):5239-5256. PubMed ID: 20054469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-Switchable Quantum Dot Förster Resonance Energy Transfer Rates in Ratiometric Potassium Sensors.
    Ruckh TT; Skipwith CG; Chang W; Senko AW; Bulovic V; Anikeeva PO; Clark HA
    ACS Nano; 2016 Apr; 10(4):4020-30. PubMed ID: 27089024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared MnCuInS/ZnS@BSA and urchin-like Au nanoparticle as a novel donor-acceptor pair for enhanced FRET biosensing.
    Xing H; Wei T; Lin X; Dai Z
    Anal Chim Acta; 2018 Dec; 1042():71-78. PubMed ID: 30428990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.
    Kim H; Ng CY; Algar WR
    Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.
    Chou KF; Dennis AM
    Sensors (Basel); 2015 Jun; 15(6):13288-325. PubMed ID: 26057041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of DNA-quantum dot conjugates for the fluorescence ratiometric detection of unlabelled DNA.
    Page LE; Zhang X; Tyrakowski CM; Ho CT; Snee PT
    Analyst; 2016 Nov; 141(22):6251-6258. PubMed ID: 27704090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MoS
    Yu X; Hu L; Zhang F; Wang M; Xia Z; Wei W
    Mikrochim Acta; 2018 Mar; 185(4):239. PubMed ID: 29594715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A FRET Fluorescent Sensor for Ratiometric and Visual Detection of Sulfide Based on Carbon Dots and Silver Nanoclusters.
    Yang J; Huang Y; Cui H; Li L; Ding Y
    J Fluoresc; 2022 Sep; 32(5):1815-1823. PubMed ID: 35704138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation.
    Liu C; Li Z; Hajagos TJ; Kishpaugh D; Chen DY; Pei Q
    ACS Nano; 2017 Jun; 11(6):6422-6430. PubMed ID: 28551988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.
    Qiao Y; Polzer F; Kirmse H; Steeg E; Kühn S; Friede S; Kirstein S; Rabe JP
    ACS Nano; 2015 Feb; 9(2):1552-60. PubMed ID: 25555126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper sensor of curcumin by fluorescence resonance energy transfer on nitrogen-doped carbon quantum dot.
    Du X; Wen G; Li Z; Li HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117538. PubMed ID: 31690485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protease sensing using nontoxic silicon quantum dots.
    Cheng X; McVey BFP; Robinson AB; Longatte G; O'Mara PB; Tan VTG; Thordarson P; Tilley RD; Gaus K; Justin Gooding J
    J Biomed Opt; 2017 Aug; 22(8):1-7. PubMed ID: 28836415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
    Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N
    Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection.
    Noor MO; Hrovat D; Moazami-Goudarzi M; Espie GS; Krull UJ
    Anal Chim Acta; 2015 Jul; 885():156-65. PubMed ID: 26231901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.