BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37795138)

  • 1. Development and Evaluation of Deep Learning Models for Automated Estimation of Myelin Maturation Using Pediatric Brain MRI Scans.
    Akinci D'Antonoli T; Todea RA; Leu N; Datta AN; Stieltjes B; Pruefer F; Wasserthal J
    Radiol Artif Intell; 2023 Sep; 5(5):e220292. PubMed ID: 37795138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning to Predict Neonatal and Infant Brain Age from Myelination on Brain MRI Scans.
    Chen JV; Chaudhari G; Hess CP; Glenn OA; Sugrue LP; Rauschecker AM; Li Y
    Radiology; 2022 Dec; 305(3):678-687. PubMed ID: 35852429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis.
    Chakrabarty S; Sotiras A; Milchenko M; LaMontagne P; Hileman M; Marcus D
    Radiol Artif Intell; 2021 Sep; 3(5):e200301. PubMed ID: 34617029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans.
    Hirsch L; Huang Y; Luo S; Rossi Saccarelli C; Lo Gullo R; Daimiel Naranjo I; Bitencourt AGV; Onishi N; Ko ES; Leithner D; Avendano D; Eskreis-Winkler S; Hughes M; Martinez DF; Pinker K; Juluru K; El-Rowmeim AE; Elnajjar P; Morris EA; Makse HA; Parra LC; Sutton EJ
    Radiol Artif Intell; 2022 Jan; 4(1):e200231. PubMed ID: 35146431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels.
    Kim PH; Yoon HM; Kim JR; Hwang JY; Choi JH; Hwang J; Lee J; Sung J; Jung KH; Bae B; Jung AY; Cho YA; Shim WH; Bak B; Lee JS
    Korean J Radiol; 2023 Nov; 24(11):1151-1163. PubMed ID: 37899524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of Simulated Postcontrast MRI of Glioblastomas and Lower-Grade Gliomas by Using Three-dimensional Fully Convolutional Neural Networks.
    Calabrese E; Rudie JD; Rauschecker AM; Villanueva-Meyer JE; Cha S
    Radiol Artif Intell; 2021 Sep; 3(5):e200276. PubMed ID: 34617027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model.
    Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K
    Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning model for brain age prediction using minimally preprocessed T1w images as input.
    Dartora C; Marseglia A; Mårtensson G; Rukh G; Dang J; Muehlboeck JS; Wahlund LO; Moreno R; Barroso J; Ferreira D; Schiöth HB; Westman E; ; ; ;
    Front Aging Neurosci; 2023; 15():1303036. PubMed ID: 38259636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images.
    Zhao Y; Tang C; Cui B; Somasundaram A; Raspe J; Hu X; Holzapfel C; Junker D; Hauner H; Menze B; Wu M; Karampinos D
    Quant Imaging Med Surg; 2023 Jul; 13(7):4699-4715. PubMed ID: 37456284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-based Detection of Intravenous Contrast Enhancement on CT Scans.
    Ye Z; Qian JM; Hosny A; Zeleznik R; Plana D; Likitlersuang J; Zhang Z; Mak RH; Aerts HJWL; Kann BH
    Radiol Artif Intell; 2022 May; 4(3):e210285. PubMed ID: 35652117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Segmentation of Diffuse White Matter Abnormality on T2-weighted Brain MR Images Using Deep Learning in Very Preterm Infants.
    Li H; Chen M; Wang J; Illapani VSP; Parikh NA; He L
    Radiol Artif Intell; 2021 May; 3(3):e200166. PubMed ID: 34142089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Tumor Segmentation and Brain Tissue Extraction from Multiparametric MRI of Pediatric Brain Tumors: A Multi-Institutional Study.
    Kazerooni AF; Arif S; Madhogarhia R; Khalili N; Haldar D; Bagheri S; Familiar AM; Anderson H; Haldar S; Tu W; Kim MC; Viswanathan K; Muller S; Prados M; Kline C; Vidal L; Aboian M; Storm PB; Resnick AC; Ware JB; Vossough A; Davatzikos C; Nabavizadeh A
    medRxiv; 2023 Jan; ():. PubMed ID: 36711966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Healthy Anatomy with Artificial Intelligence for Unsupervised Anomaly Detection in Brain MRI.
    Baur C; Wiestler B; Muehlau M; Zimmer C; Navab N; Albarqouni S
    Radiol Artif Intell; 2021 May; 3(3):e190169. PubMed ID: 34136814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.
    Ghaffari H; Tavakoli H; Pirzad Jahromi G
    Br J Radiol; 2022 Aug; 95(1136):20211253. PubMed ID: 35616643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Data Distribution on Federated Learning Performance in Tumor Segmentation.
    Luo G; Liu T; Lu J; Chen X; Yu L; Wu J; Chen DZ; Cai W
    Radiol Artif Intell; 2023 May; 5(3):e220082. PubMed ID: 37293342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automation of a Rule-based Workflow to Estimate Age from Brain MR Imaging of Infants and Children Up to 2 Years Old Using Stacked Deep Learning.
    Wada A; Saito Y; Fujita S; Irie R; Akashi T; Sano K; Kato S; Ikenouchi Y; Hagiwara A; Sato K; Tomizawa N; Hayakawa Y; Kikuta J; Kamagata K; Suzuki M; Hori M; Nakanishi A; Aoki S
    Magn Reson Med Sci; 2023 Jan; 22(1):57-66. PubMed ID: 34897147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.