BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37795556)

  • 1. Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation.
    Maloca PM; Pfau M; Janeschitz-Kriegl L; Reich M; Goerdt L; Holz FG; Müller PL; Valmaggia P; Fasler K; Keane PA; Zarranz-Ventura J; Zweifel S; Wiesendanger J; Kaiser P; Enz TJ; Rothenbuehler SP; Hasler PW; Juedes M; Freichel C; Egan C; Tufail A; Scholl HPN; Denk N
    J Biophotonics; 2024 Feb; 17(2):e202300274. PubMed ID: 37795556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence.
    Maloca PM; Müller PL; Lee AY; Tufail A; Balaskas K; Niklaus S; Kaiser P; Suter S; Zarranz-Ventura J; Egan C; Scholl HPN; Schnitzer TK; Singer T; Hasler PW; Denk N
    Commun Biol; 2021 Feb; 4(1):170. PubMed ID: 33547415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.
    Kugelman J; Alonso-Caneiro D; Chen Y; Arunachalam S; Huang D; Vallis N; Collins MJ; Chen FK
    Transl Vis Sci Technol; 2020 Oct; 9(11):12. PubMed ID: 33133774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning segmentation of fibrous cap in intravascular optical coherence tomography images.
    Lee J; Kim JN; Dallan LAP; Zimin VN; Hoori A; Hassani NS; Makhlouf MHE; Guagliumi G; Bezerra HG; Wilson DL
    Sci Rep; 2024 Feb; 14(1):4393. PubMed ID: 38388637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of automated segmentation software on optical coherence tomography volume data.
    Tian J; Varga B; Tatrai E; Fanni P; Somfai GM; Smiddy WE; Debuc DC
    J Biophotonics; 2016 May; 9(5):478-89. PubMed ID: 27159849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of automated artificial intelligence segmentation of optical coherence tomography images.
    Maloca PM; Lee AY; de Carvalho ER; Okada M; Fasler K; Leung I; Hörmann B; Kaiser P; Suter S; Hasler PW; Zarranz-Ventura J; Egan C; Heeren TFC; Balaskas K; Tufail A; Scholl HPN
    PLoS One; 2019; 14(8):e0220063. PubMed ID: 31419240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning in glaucoma with optical coherence tomography: a review.
    Ran AR; Tham CC; Chan PP; Cheng CY; Tham YC; Rim TH; Cheung CY
    Eye (Lond); 2021 Jan; 35(1):188-201. PubMed ID: 33028972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of optical degradation from cataract using a new Deep Learning optical coherence tomography segmentation algorithm.
    Allegrini D; Raimondi R; Sorrentino T; Tripepi D; Stradiotto E; Caruso M; De Rosa FP; Romano MR
    Graefes Arch Clin Exp Ophthalmol; 2024 Feb; 262(2):431-440. PubMed ID: 37843567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning based retinal OCT segmentation.
    Pekala M; Joshi N; Liu TYA; Bressler NM; DeBuc DC; Burlina P
    Comput Biol Med; 2019 Nov; 114():103445. PubMed ID: 31561100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Based Optical Coherence Tomography and Optical Coherence Tomography Angiography Image Analysis: An Updated Summary.
    Ran A; Cheung CY
    Asia Pac J Ophthalmol (Phila); 2021 May-Jun 01; 10(3):253-260. PubMed ID: 34383717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Ground-Truth Optical Coherence Tomography via Three-Dimensional Unsupervised Deep Learning Processing and Data.
    Ni G; Wu R; Zheng F; Li M; Huang S; Ge X; Liu L; Liu Y
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2395-2407. PubMed ID: 38324426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-learning visualization enhancement method for optical coherence tomography angiography in dermatology.
    Xu J; Yuan X; Huang Y; Qin J; Lan G; Qiu H; Yu B; Jia H; Tan H; Zhao S; Feng Z; An L; Wei X
    J Biophotonics; 2023 Oct; 16(10):e202200366. PubMed ID: 37289020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully-automated atrophy segmentation in dry age-related macular degeneration in optical coherence tomography.
    Derradji Y; Mosinska A; Apostolopoulos S; Ciller C; De Zanet S; Mantel I
    Sci Rep; 2021 Nov; 11(1):21893. PubMed ID: 34751189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of segmentation density on spectral domain optical coherence tomography assessment in Stargardt disease.
    Velaga SB; Nittala MG; Jenkins D; Melendez J; Ho A; Strauss RW; Scholl HP; Sadda SR
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):549-556. PubMed ID: 30613916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Central Visual Field Measures From Macular OCT Volume Scans With Deep Learning.
    Mohammadzadeh V; Vepa A; Li C; Wu S; Chew L; Mahmoudinezhad G; Maltz E; Sahin S; Mylavarapu A; Edalati K; Martinyan J; Yalzadeh D; Scalzo F; Caprioli J; Nouri-Mahdavi K
    Transl Vis Sci Technol; 2023 Nov; 12(11):5. PubMed ID: 37917086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.