These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37795762)

  • 21. Structure-Based Site of Metabolism (SOM) Prediction of Ligand for CYP3A4 Enzyme: Comparison of Glide XP and Induced Fit Docking (IFD).
    Lokwani DK; Sarkate AP; Karnik KS; Nikalje APG; Seijas JA
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32244772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method.
    Hogues H; Sulea T; Gaudreault F; Corbeil CR; Purisima EO
    J Comput Aided Mol Des; 2018 Jan; 32(1):143-150. PubMed ID: 28983727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GPCRs through the keyhole: the role of protein flexibility in ligand binding to β-adrenoceptors.
    Emtage AL; Mistry SN; Fischer PM; Kellam B; Laughton CA
    J Biomol Struct Dyn; 2017 Sep; 35(12):2604-2619. PubMed ID: 27532213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the binding properties of CASP14 targets and models.
    Egbert M; Ghani U; Ashizawa R; Kotelnikov S; Nguyen T; Desta I; Hashemi N; Padhorny D; Kozakov D; Vajda S
    Proteins; 2021 Dec; 89(12):1922-1939. PubMed ID: 34368994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?
    Ramírez D; Caballero J
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29710787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological and functional relevance of CASP predictions.
    Liu T; Ish-Shalom S; Torng W; Lafita A; Bock C; Mort M; Cooper DN; Bliven S; Capitani G; Mooney SD; Altman RB
    Proteins; 2018 Mar; 86 Suppl 1(Suppl Suppl 1):374-386. PubMed ID: 28975675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are AM1 ligand-protein binding enthalpies good enough for use in the rational design of new drugs?
    Villar R; Gil MJ; García JI; Martínez-Merino V
    J Comput Chem; 2005 Oct; 26(13):1347-58. PubMed ID: 16021597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular modelling prediction of ligand binding site flexibility.
    Yang AY; Källblad P; Mancera RL
    J Comput Aided Mol Des; 2004 Apr; 18(4):235-50. PubMed ID: 15562988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards predicting Ca2+-binding sites with different coordination numbers in proteins with atomic resolution.
    Wang X; Kirberger M; Qiu F; Chen G; Yang JJ
    Proteins; 2009 Jun; 75(4):787-98. PubMed ID: 19003991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploration of enzyme-ligand interactions in CYP2D6 & 3A4 homology models and crystal structures using a novel computational approach.
    Kjellander B; Masimirembwa CM; Zamora I
    J Chem Inf Model; 2007; 47(3):1234-47. PubMed ID: 17381082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing a flexible-receptor docking algorithm in a model binding site.
    Wei BQ; Weaver LH; Ferrari AM; Matthews BW; Shoichet BK
    J Mol Biol; 2004 Apr; 337(5):1161-82. PubMed ID: 15046985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous Evaluation of Ligand Protein Predictions: A Weekly Community Challenge for Drug Docking.
    Wagner JR; Churas CP; Liu S; Swift RV; Chiu M; Shao C; Feher VA; Burley SK; Gilson MK; Amaro RE
    Structure; 2019 Aug; 27(8):1326-1335.e4. PubMed ID: 31257108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design.
    Tan YS; Reeks J; Brown CJ; Thean D; Ferrer Gago FJ; Yuen TY; Goh ET; Lee XE; Jennings CE; Joseph TL; Lakshminarayanan R; Lane DP; Noble ME; Verma CS
    J Phys Chem Lett; 2016 Sep; 7(17):3452-7. PubMed ID: 27532490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA target highlights in CASP15: Evaluation of predicted models by structure providers.
    Kretsch RC; Andersen ES; Bujnicki JM; Chiu W; Das R; Luo B; Masquida B; McRae EKS; Schroeder GM; Su Z; Wedekind JE; Xu L; Zhang K; Zheludev IN; Moult J; Kryshtafovych A
    Proteins; 2023 Dec; 91(12):1600-1615. PubMed ID: 37466021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site.
    Boyce SE; Mobley DL; Rocklin GJ; Graves AP; Dill KA; Shoichet BK
    J Mol Biol; 2009 Dec; 394(4):747-63. PubMed ID: 19782087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking.
    Hu B; Lill MA
    J Chem Inf Model; 2013 May; 53(5):1179-90. PubMed ID: 23621564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2015 Jun; 29(6):485-509. PubMed ID: 25940276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conservation of binding properties in protein models.
    Egbert M; Porter KA; Ghani U; Kotelnikov S; Nguyen T; Ashizawa R; Kozakov D; Vajda S
    Comput Struct Biotechnol J; 2021; 19():2549-2566. PubMed ID: 34025942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Dec; 33(12):1045-1055. PubMed ID: 31463704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.