These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37795919)

  • 21. Preserving the edge magnetism of zigzag graphene nanoribbons by ethylene termination: insight by Clar's rule.
    Li Y; Zhou Z; Cabrera CR; Chen Z
    Sci Rep; 2013; 3():2030. PubMed ID: 23778381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.
    Owens JR; Cruz-Silva E; Meunier V
    Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons.
    Kuo DMT; Chang YC
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lower Electric Field-Driven Magnetic Phase Transition and Perfect Spin Filtering in Graphene Nanoribbons by Edge Functionalization.
    Rezapour MR; Yun J; Lee G; Kim KS
    J Phys Chem Lett; 2016 Dec; 7(24):5049-5055. PubMed ID: 27973868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening effects on the field enhancement factor of zigzag graphene nanoribbon arrays: a first-principles study.
    Hu H; Lin TC; Leung TC; Su WS
    Phys Chem Chem Phys; 2018 May; 20(21):14627-14634. PubMed ID: 29770396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly( para-2,9-dibenzo[ bc, kl]coronenylene) Polymer Chains.
    Beyer D; Wang S; Pignedoli CA; Melidonie J; Yuan B; Li C; Wilhelm J; Ruffieux P; Berger R; Müllen K; Fasel R; Feng X
    J Am Chem Soc; 2019 Feb; 141(7):2843-2846. PubMed ID: 30731042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic and magnetic properties of H-terminated graphene nanoribbons deposited on the topological insulator Sb2Te3.
    Zhang W; Hajiheidari F; Li Y; Mazzarello R
    Sci Rep; 2016 Jul; 6():29009. PubMed ID: 27405058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations.
    Ding Y; Wang Y
    Phys Chem Chem Phys; 2012 Feb; 14(6):2040-9. PubMed ID: 22234604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.
    Huang LF; Zhang GR; Zheng XH; Gong PL; Cao TF; Zeng Z
    J Phys Condens Matter; 2013 Feb; 25(5):055304. PubMed ID: 23300171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure.
    Keerthi A; Sánchez-Sánchez C; Deniz O; Ruffieux P; Schollmeyer D; Feng X; Narita A; Fasel R; Müllen K
    Chem Asian J; 2020 Nov; 15(22):3807-3811. PubMed ID: 32955160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of strain and electric field on the half-metallicity of pristine and O-H/C-N-decorated zigzag graphene nanoribbons.
    Zhang S; Cao C; Zeng B; Long M
    J Phys Condens Matter; 2020 Apr; 32(17):175302. PubMed ID: 31918423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The spin-dependent transport properties of defected zigzag graphene nanoribbons with graphene nanobubbles.
    Ni Y; Li J; Tao W; Ding H; Li RX
    Phys Chem Chem Phys; 2021 Feb; 23(4):2753-2761. PubMed ID: 33471019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How size, edge shape, functional groups and embeddedness influence the electronic structure and partial optical properties of graphene nanoribbons.
    Feng J; Mao X; Zhu H; Yang Z; Cui M; Ma Y; Zhang D; Bi S
    Phys Chem Chem Phys; 2021 Sep; 23(36):20695-20701. PubMed ID: 34516597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons.
    Pan M; Girão EC; Jia X; Bhaviripudi S; Li Q; Kong J; Meunier V; Dresselhaus MS
    Nano Lett; 2012 Apr; 12(4):1928-33. PubMed ID: 22364382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.