These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37795969)

  • 61. Assessment of Extracellular Vesicles Purity Using Proteomic Standards.
    Wang T; Anderson KW; Turko IV
    Anal Chem; 2017 Oct; 89(20):11070-11075. PubMed ID: 28949504
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Improving the Purity of Extracellular Vesicles by Removal of Lipoproteins from Size Exclusion Chromatography- and Ultracentrifugation-Processed Samples Using Glycosaminoglycan-Functionalized Magnetic Beads.
    Chou CY; Chiang PC; Li CC; Chang JW; Lu PH; Hsu WF; Chang LC; Hsu JL; Wu MS; Wo AM
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):44386-44398. PubMed ID: 39149774
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification.
    Iannotta D; A A; Lai A; Nair S; Koifman N; Lappas M; Salomon C; Wolfram J
    Small; 2024 May; 20(18):e2307240. PubMed ID: 38100284
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Imaging flow cytometry challenges the usefulness of classically used extracellular vesicle labeling dyes and qualifies the novel dye Exoria for the labeling of mesenchymal stromal cell-extracellular vesicle preparations.
    Tertel T; Schoppet M; Stambouli O; Al-Jipouri A; James PF; Giebel B
    Cytotherapy; 2022 Jun; 24(6):619-628. PubMed ID: 35314115
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mass-Spectrometry Based Proteome Comparison of Extracellular Vesicle Isolation Methods: Comparison of ME-kit, Size-Exclusion Chromatography, and High-Speed Centrifugation.
    Askeland A; Borup A; Østergaard O; Olsen JV; Lund SM; Christiansen G; Kristensen SR; Heegaard NHH; Pedersen S
    Biomedicines; 2020 Jul; 8(8):. PubMed ID: 32722497
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of the
    Hong J; Dauros-Singorenko P; Whitcombe A; Payne L; Blenkiron C; Phillips A; Swift S
    J Extracell Vesicles; 2019; 8(1):1632099. PubMed ID: 31275533
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In-Cell Labeling Coupled to Direct Analysis of Extracellular Vesicles in the Conditioned Medium to Study Extracellular Vesicles Secretion with Minimum Sample Processing and Particle Loss.
    Viveiros A; Kadam V; Monyror J; Morales LC; Pink D; Rieger AM; Sipione S; Posse de Chaves E
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159161
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Recent advances on protein-based quantification of extracellular vesicles.
    Cloet T; Momenbeitollahi N; Li H
    Anal Biochem; 2021 Jun; 622():114168. PubMed ID: 33741309
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform.
    Rai A; Fang H; Claridge B; Simpson RJ; Greening DW
    J Extracell Vesicles; 2021 Nov; 10(13):e12164. PubMed ID: 34817906
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis.
    Ströhle G; Gan J; Li H
    Anal Bioanal Chem; 2022 Oct; 414(24):7051-7067. PubMed ID: 35732746
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mesenchymal Stem Cell-Derived Extracellular Vesicle Isolation and Their Protein Cargo Characterization.
    Morente-López M; Fafián-Labora JA; Carrera M; de Toro FJ; Gil C; Mateos J; Arufe MC
    Methods Mol Biol; 2021; 2259():3-12. PubMed ID: 33687705
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comprehensive isolation of extracellular vesicles and nanoparticles.
    Zhang Q; Jeppesen DK; Higginbotham JN; Franklin JL; Coffey RJ
    Nat Protoc; 2023 May; 18(5):1462-1487. PubMed ID: 36914899
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Proteomic Profiling of Extracellular Vesicles Released by Leptin-Treated Breast Cancer Cells: A Potential Role in Cancer Metabolism.
    Gelsomino L; Barone I; Caruso A; Giordano F; Brindisi M; Morello G; Accattatis FM; Panza S; Cappello AR; Bonofiglio D; Andò S; Catalano S; Giordano C
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361728
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples.
    Smith JT; Wunsch BH; Dogra N; Ahsen ME; Lee K; Yadav KK; Weil R; Pereira MA; Patel JV; Duch EA; Papalia JM; Lofaro MF; Gupta M; Tewari AK; Cordon-Cardo C; Stolovitzky G; Gifford SM
    Lab Chip; 2018 Dec; 18(24):3913-3925. PubMed ID: 30468237
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR.
    Gallart-Palau X; Serra A; Sze SK
    Mol Neurodegener; 2016 May; 11(1):41. PubMed ID: 27216497
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Isolation methods of large and small extracellular vesicles derived from cardiovascular progenitors: A comparative study.
    Saludas L; Garbayo E; Ruiz-Villalba A; Hernández S; Vader P; Prósper F; Blanco-Prieto MJ
    Eur J Pharm Biopharm; 2022 Jan; 170():187-196. PubMed ID: 34968647
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optimizing Size Exclusion Chromatography for Extracellular Vesicle Enrichment and Proteomic Analysis from Clinically Relevant Samples.
    Lane RE; Korbie D; Trau M; Hill MM
    Proteomics; 2019 Apr; 19(8):e1800156. PubMed ID: 30632691
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication.
    Tong M; Kleffmann T; Pradhan S; Johansson CL; DeSousa J; Stone PR; James JL; Chen Q; Chamley LW
    Hum Reprod; 2016 Apr; 31(4):687-99. PubMed ID: 26839151
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Technological Approaches in the Analysis of Extracellular Vesicle Nucleotide Sequences.
    Tesovnik T; Jenko Bizjan B; Šket R; Debeljak M; Battelino T; Kovač J
    Front Bioeng Biotechnol; 2021; 9():787551. PubMed ID: 35004647
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages.
    Mashayekhi V; Schomisch A; Rasheed S; Aparicio-Puerta E; Risch T; Yildiz D; Koch M; Both S; Ludwig N; Legroux TM; Keller A; Müller R; Fuhrmann G; Hoppstädter J; Kiemer AK
    Cell Commun Signal; 2024 Jun; 22(1):344. PubMed ID: 38937789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.