These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37795987)

  • 21. Plasma-Assisted Defect Engineering on p-n Heterojunction for High-Efficiency Electrochemical Ammonia Synthesis.
    Liu J; He L; Zhao S; Li S; Hu L; Tian JY; Ding J; Zhang Z; Du M
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205786. PubMed ID: 36683249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
    Nazemi M; El-Sayed MA
    Acc Chem Res; 2021 Dec; 54(23):4294-4304. PubMed ID: 34719918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core@shell structured Au@SnO
    Wang P; Ji Y; Shao Q; Li Y; Huang X
    Sci Bull (Beijing); 2020 Mar; 65(5):350-358. PubMed ID: 36659225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu
    Zou Y; Sun C; Gong W; Yang X; Huang X; Yang T; Lu W; Jiang J
    ACS Nano; 2017 Apr; 11(4):3776-3785. PubMed ID: 28394555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategic Structure Tuning of Yolk-Shell Microcages for Efficient Nitrogen Fixation.
    Guo H; Li W; Chen K; Yue M; Huang Y; Liu Y; Shao H; Chen C; Wang C; Wang Y
    ChemSusChem; 2021 Jun; 14(12):2521-2528. PubMed ID: 33830646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Ambient Electrocatalytic Ammonia Synthesis by Nanogold Triggered via Boron Clusters Combined with Carbon Nanotubes.
    Zhao X; Yang Z; Kuklin AV; Baryshnikov GV; Ă…gren H; Zhou X; Zhang H
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42821-42831. PubMed ID: 32865968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered Electron-Deficient Sites at Boron-Doped Strontium Titanate/Electrolyte Interfaces Accelerate the Electrocatalytic Reduction of N
    Kalra P; Samolia M; Bashir AU; Avasare VD; Ingole PP
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):37938-37951. PubMed ID: 39012060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic Multisites Fe
    Lu K; Xia F; Li B; Liu Y; Abdul Razak IB; Gao S; Kaelin J; Brown DE; Cheng Y
    ACS Nano; 2021 Oct; 15(10):16887-16895. PubMed ID: 34612041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser.
    Zou H; Rong W; Wei S; Ji Y; Duan L
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29462-29468. PubMed ID: 33172992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogen Electrocatalysis: Electrolyte Engineering Strategies to Boost Faradaic Efficiency.
    Thapa L; Retna Raj C
    ChemSusChem; 2023 Oct; 16(20):e202300465. PubMed ID: 37401159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational design of artificial Lewis pairs coupling with polyethylene glycol for efficient electrochemical ammonia synthesis.
    Wang H; Yuan M; Zhang J; Bai Y; Zhang K; Li B; Zhang G
    J Colloid Interface Sci; 2023 Nov; 649():166-174. PubMed ID: 37348336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The rational design of Cu
    Liu L; Yang X; Zhao Y; Yao B; Hou Y; Fu W
    Nanoscale; 2021 Jan; 13(2):1134-1143. PubMed ID: 33399603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facet-Dependent Catalytic Performance of Au Nanocrystals for Electrochemical Nitrogen Reduction.
    Zhang W; Shen Y; Pang F; Quek D; Niu W; Wang W; Chen P
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41613-41619. PubMed ID: 32811150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic insights into the electrolyte effects on the electrochemical nitrogen reduction reaction using copper hexacyanoferrate/f-MWCNT nano-composites.
    Bhat AY; Jain P; Bhat MA; Ingole PP
    Phys Chem Chem Phys; 2024 Jan; 26(3):1777-1791. PubMed ID: 38168681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic Study on Enhanced Electrocatalytic Nitrogen Reduction Reaction by Mo Single Clusters Supported on MoS
    Zhang Z; Xu X
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28900-28910. PubMed ID: 35714283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermediates Regulation via Electron-Deficient Cu Sites for Selective Nitrate-to-Ammonia Electroreduction.
    Gu Z; Zhang Y; Wei X; Duan Z; Gong Q; Luo K
    Adv Mater; 2023 Nov; 35(48):e2303107. PubMed ID: 37730433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper selenide (Cu
    Zhou R; Huang Y; Zhou J; Niu H; Wan L; Li Y; Xu J; Xu J
    Dalton Trans; 2018 Nov; 47(46):16587-16595. PubMed ID: 30417916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of Vacancy Defects on Electrochemical Nitrogen Reduction Reaction Performance of MXenes.
    Kagdada HL; Jain A
    Chemphyschem; 2024 May; 25(10):e202300993. PubMed ID: 38369607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensional Porous Cu/Cu
    Sun C; Xiao Y; Liu X; Hu J; Zhao Q; Yin Z; Cao S
    Inorg Chem; 2024 Jun; 63(25):11852-11859. PubMed ID: 38856980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase Engineering of Nonstoichiometric Cu
    Li J; Ren Y; Li Z; Huang Y
    ACS Nano; 2023 Sep; 17(18):18507-18516. PubMed ID: 37710357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.