These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 37796107)
21. Targeting Androgen Receptor Activation Function-1 with EPI to Overcome Resistance Mechanisms in Castration-Resistant Prostate Cancer. Yang YC; Banuelos CA; Mawji NR; Wang J; Kato M; Haile S; McEwan IJ; Plymate S; Sadar MD Clin Cancer Res; 2016 Sep; 22(17):4466-77. PubMed ID: 27140928 [TBL] [Abstract][Full Text] [Related]
22. Growth Inhibition by Testosterone in an Androgen Receptor Splice Variant-Driven Prostate Cancer Model. Nakata D; Nakayama K; Masaki T; Tanaka A; Kusaka M; Watanabe T Prostate; 2016 Dec; 76(16):1536-1545. PubMed ID: 27473672 [TBL] [Abstract][Full Text] [Related]
23. NDRG2 acts as a negative regulator downstream of androgen receptor and inhibits the growth of androgen-dependent and castration-resistant prostate cancer. Yu C; Wu G; Li R; Gao L; Yang F; Zhao Y; Zhang J; Zhang R; Zhang J; Yao L; Yuan J; Li X Cancer Biol Ther; 2015; 16(2):287-96. PubMed ID: 25756511 [TBL] [Abstract][Full Text] [Related]
24. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Abudurexiti M; Zhu W; Wang Y; Wang J; Xu W; Huang Y; Zhu Y; Shi G; Zhang H; Zhu Y; Shen Y; Dai B; Wan F; Lin G; Ye D Prostate; 2020 Sep; 80(12):950-961. PubMed ID: 32648618 [TBL] [Abstract][Full Text] [Related]
25. Therapeutic Potential of Leelamine, a Novel Inhibitor of Androgen Receptor and Castration-Resistant Prostate Cancer. Singh KB; Ji X; Singh SV Mol Cancer Ther; 2018 Oct; 17(10):2079-2090. PubMed ID: 30030299 [TBL] [Abstract][Full Text] [Related]
26. Combined N-terminal androgen receptor and autophagy inhibition increases the antitumor effect in enzalutamide sensitive and enzalutamide resistant prostate cancer cells. Kranzbühler B; Salemi S; Mortezavi A; Sulser T; Eberli D Prostate; 2019 Feb; 79(2):206-214. PubMed ID: 30345525 [TBL] [Abstract][Full Text] [Related]
27. The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Labrecque MP; Alumkal JJ; Coleman IM; Nelson PS; Morrissey C Endocr Relat Cancer; 2021 Jul; 28(8):T51-T66. PubMed ID: 33792558 [TBL] [Abstract][Full Text] [Related]
28. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Hoang DT; Iczkowski KA; Kilari D; See W; Nevalainen MT Oncotarget; 2017 Jan; 8(2):3724-3745. PubMed ID: 27741508 [TBL] [Abstract][Full Text] [Related]
29. Reproducible preclinical models of androgen receptor driven human prostate cancer bone metastasis. Yin J; Daryanani A; Lu F; Ku AT; Bright JR; Alilin ANS; Bowman J; Lake R; Li C; Truong TM; Twohig JD; Mostaghel EA; Ishikawa M; Simpson M; Trostel SY; Corey E; Sowalsky AG; Kelly K Prostate; 2024 Aug; 84(11):1033-1046. PubMed ID: 38708958 [TBL] [Abstract][Full Text] [Related]
30. Catalytic inhibitors of DNA topoisomerase II suppress the androgen receptor signaling and prostate cancer progression. Li H; Xie N; Gleave ME; Dong X Oncotarget; 2015 Aug; 6(24):20474-84. PubMed ID: 26009876 [TBL] [Abstract][Full Text] [Related]
31. ARVib suppresses growth of advanced prostate cancer via inhibition of androgen receptor signaling. Liu C; Armstrong CM; Ning S; Yang JC; Lou W; Lombard AP; Zhao J; Wu CY; Yu A; Evans CP; Tepper CG; Li PK; Gao AC Oncogene; 2021 Sep; 40(35):5379-5392. PubMed ID: 34272475 [TBL] [Abstract][Full Text] [Related]
32. Androgen deprivation induces double-null prostate cancer via aberrant nuclear export and ribosomal biogenesis through HGF and Wnt activation. Kim WK; Buckley AJ; Lee DH; Hiroto A; Nenninger CH; Olson AW; Wang J; Li Z; Vikram R; Adzavon YM; Yau TY; Bao Y; Kahn M; Geradts J; Xiao GQ; Sun Z Nat Commun; 2024 Feb; 15(1):1231. PubMed ID: 38336745 [TBL] [Abstract][Full Text] [Related]
33. Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Kregel S; Wang C; Han X; Xiao L; Fernandez-Salas E; Bawa P; McCollum BL; Wilder-Romans K; Apel IJ; Cao X; Speers C; Wang S; Chinnaiyan AM Neoplasia; 2020 Feb; 22(2):111-119. PubMed ID: 31931431 [TBL] [Abstract][Full Text] [Related]
34. A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Dahiya NR; Chandrasekaran B; Kolluru V; Ankem M; Damodaran C; Vadhanam MV Mol Carcinog; 2018 Oct; 57(10):1332-1341. PubMed ID: 30069922 [TBL] [Abstract][Full Text] [Related]
35. Cotargeting Androgen Receptor Splice Variants and mTOR Signaling Pathway for the Treatment of Castration-Resistant Prostate Cancer. Kato M; Banuelos CA; Imamura Y; Leung JK; Caley DP; Wang J; Mawji NR; Sadar MD Clin Cancer Res; 2016 Jun; 22(11):2744-54. PubMed ID: 26712685 [TBL] [Abstract][Full Text] [Related]
36. TMPRSS2-ERG fusions confer efficacy of enzalutamide in an in vivo bone tumor growth model. Semaan L; Mander N; Cher ML; Chinni SR BMC Cancer; 2019 Oct; 19(1):972. PubMed ID: 31638934 [TBL] [Abstract][Full Text] [Related]
37. Patient-derived Models of Abiraterone- and Enzalutamide-resistant Prostate Cancer Reveal Sensitivity to Ribosome-directed Therapy. Lawrence MG; Obinata D; Sandhu S; Selth LA; Wong SQ; Porter LH; Lister N; Pook D; Pezaro CJ; Goode DL; Rebello RJ; Clark AK; Papargiris M; Van Gramberg J; Hanson AR; Banks P; Wang H; Niranjan B; Keerthikumar S; Hedwards S; Huglo A; Yang R; Henzler C; Li Y; Lopez-Campos F; Castro E; Toivanen R; Azad A; Bolton D; Goad J; Grummet J; Harewood L; Kourambas J; Lawrentschuk N; Moon D; Murphy DG; Sengupta S; Snow R; Thorne H; Mitchell C; Pedersen J; Clouston D; Norden S; Ryan A; Dehm SM; Tilley WD; Pearson RB; Hannan RD; Frydenberg M; Furic L; Taylor RA; Risbridger GP Eur Urol; 2018 Nov; 74(5):562-572. PubMed ID: 30049486 [TBL] [Abstract][Full Text] [Related]
38. Targeting AR-Beclin 1 complex-modulated growth factor signaling increases the antiandrogen Enzalutamide sensitivity to better suppress the castration-resistant prostate cancer growth. Zhang M; Sun Y; Meng J; Zhang L; Liang C; Chang C Cancer Lett; 2019 Feb; 442():483-490. PubMed ID: 30423407 [TBL] [Abstract][Full Text] [Related]
39. High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Jansson KH; Tucker JB; Stahl LE; Simmons JK; Fuller C; Beshiri ML; Agarwal S; Fang L; Hynes PG; Alilin AN; Lake R; Abbey YC; Cawley J; Tice CM; Yin J; McKnight C; Klummp-Thomas C; Zhang X; Guha R; Hoover S; Simpson RM; Nguyen HM; Corey E; Thomas CJ; Proia DA; Kelly K Sci Rep; 2018 Nov; 8(1):17239. PubMed ID: 30467317 [TBL] [Abstract][Full Text] [Related]
40. Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature. Labrecque MP; Brown LG; Coleman IM; Nguyen HM; Lin DW; Corey E; Nelson PS; Morrissey C PLoS One; 2021; 16(1):e0245602. PubMed ID: 33471819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]