BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37796489)

  • 1. The Structural Layers of the Porcine Iris Exhibit Inherently Different Biomechanical Properties.
    Tan RKY; Panda SK; Braeu FA; Muralidharan AR; Nongpiur ME; Chan ASY; Aung T; Najjar RP; Girard MJA
    Invest Ophthalmol Vis Sci; 2023 Oct; 64(13):11. PubMed ID: 37796489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability of the porcine iris stroma.
    Tan RKY; Wang X; Chan ASY; Nongpiur ME; Boote C; Perera SA; Girard MJA
    Exp Eye Res; 2019 Apr; 181():190-196. PubMed ID: 30738068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterior-posterior asymmetry in iris mechanics measured by indentation.
    Whitcomb JE; Amini R; Simha NK; Barocas VH
    Exp Eye Res; 2011 Oct; 93(4):475-81. PubMed ID: 21787771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Iris Stiffness and Permeability in Primary Angle Closure Glaucoma.
    Panda SK; Tan RKY; Tun TA; Buist ML; Nongpiur M; Baskaran M; Aung T; Girard MJA
    Invest Ophthalmol Vis Sci; 2021 Oct; 62(13):29. PubMed ID: 34714323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The posterior location of the dilator muscle induces anterior iris bowing during dilation, even in the absence of pupillary block.
    Amini R; Whitcomb JE; Al-Qaisi MK; Akkin T; Jouzdani S; Dorairaj S; Prata T; Illitchev E; Liebmann JM; Ritch R; Barocas VH
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1188-94. PubMed ID: 22281822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Young's Modulus Determination of Normal and Glaucomatous Human Iris.
    Narayanaswamy A; Nai MH; Nongpiur ME; Htoon HM; Thomas A; Sangtam T; Lim CT; Wong TT; Aung T
    Invest Ophthalmol Vis Sci; 2019 Jun; 60(7):2690-2695. PubMed ID: 31242291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the viscoelastic mechanical properties of the porcine optic nerve head using micromechanical testing and finite element modeling.
    Safa BN; Read AT; Ethier CR
    Acta Biomater; 2021 Oct; 134():379-387. PubMed ID: 34274532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo porcine iris stiffening due to drug stimulation.
    Whitcomb JE; Barnett VA; Olsen TW; Barocas VH
    Exp Eye Res; 2009 Oct; 89(4):456-61. PubMed ID: 19450580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Iris Stiffness in Patients With a History of Angle-Closure Glaucoma: An Image-Based Inverse Modeling Analysis.
    Pant AD; Gogte P; Pathak-Ray V; Dorairaj SK; Amini R
    Invest Ophthalmol Vis Sci; 2018 Aug; 59(10):4134-4142. PubMed ID: 30105368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for iris parameter measurements in patients with primary angle closure glaucoma.
    Wang Z; Chen D; Zeng Y; Wang Y; Liang X; Liu X
    Eye Sci; 2013 Mar; 28(1):1-6. PubMed ID: 24404660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The viscoelastic behaviors of several kinds of cancer cells and normal cells.
    Xie Y; Wang M; Cheng M; Gao Z; Wang G
    J Mech Behav Biomed Mater; 2019 Mar; 91():54-58. PubMed ID: 30529987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Japanese eyes after laser peripheral iridotomy: an anterior segment optical coherence tomography study.
    Ang BC; Nongpiur ME; Aung T; Mizoguchi T; Ozaki M
    Clin Exp Ophthalmol; 2016 Apr; 44(3):159-65. PubMed ID: 26485668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swept-source optical coherence tomography assessment of iris-trabecular contact after phacoemulsification with or without goniosynechialysis in eyes with primary angle closure glaucoma.
    Tun TA; Baskaran M; Perera SA; Htoon HM; Aung T; Husain R
    Br J Ophthalmol; 2015 Jul; 99(7):927-31. PubMed ID: 25573150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo estimation of murine iris stiffness using finite element modeling.
    Lee C; Li G; Stamer WD; Ethier CR
    Exp Eye Res; 2021 Jan; 202():108374. PubMed ID: 33253706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in iris volume with physiologic mydriasis in subtypes of primary angle closure glaucoma.
    Narayanaswamy A; Zheng C; Perera SA; Htoon HM; Friedman DS; Tun TA; He M; Baskaran M; Aung T
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):708-13. PubMed ID: 23299474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure.
    Mak H; Xu G; Leung CK
    Ophthalmology; 2013 Dec; 120(12):2517-2524. PubMed ID: 23850092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of vibrational optical coherence tomography to measure viscoelastic properties of muscle and tendon: A new method to follow musculoskeletal injury and pathology In vivo.
    Silver FH; Kelkar N; Deshmukh T
    J Mech Behav Biomed Mater; 2021 Jul; 119():104479. PubMed ID: 33798938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Measurements of Prelamina and Lamina Cribrosa Biomechanical Properties in Humans.
    Zhang L; Beotra MR; Baskaran M; Tun TA; Wang X; Perera SA; Strouthidis NG; Aung T; Boote C; Girard MJA
    Invest Ophthalmol Vis Sci; 2020 Mar; 61(3):27. PubMed ID: 32186670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris investigated using uniaxial tensile tests.
    Li T; Qin X; Liu Z; Zhang H; Li L
    Acta Bioeng Biomech; 2023; 25(2):85-92. PubMed ID: 38314516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.