These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37796669)

  • 1. Effect of Time-Varying Multiplicative Noise on DNN- k WTA Model.
    Lu W; Zheng Y; Leung CS
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37796669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNN-kWTA With Bounded Random Offset Voltage Drifts in Threshold Logic Units.
    Lu W; Leung CS; Sum J; Xiao Y
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):3184-3192. PubMed ID: 33513113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Imperfections on the Operational Correctness of DNN-kWTA Model.
    Lu W; Leung CS; Sum J
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):15021-15029. PubMed ID: 37310825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness Analysis on Dual Neural Network-based $k$ WTA With Input Noise.
    Feng R; Leung CS; Sum J
    IEEE Trans Neural Netw Learn Syst; 2018 Apr; 29(4):1082-1094. PubMed ID: 28186910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On Wang $k$ WTA With Input Noise, Output Node Stochastic, and Recurrent State Noise.
    Sum J; Leung CS; Ho KI
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4212-4222. PubMed ID: 29989975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initialization-Based k-Winners-Take-All Neural Network Model Using Modified Gradient Descent.
    Zhang Y; Li S; Geng G
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4130-4138. PubMed ID: 34752408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel recurrent neural network with one neuron and finite-time convergence for k-winners-take-all operation.
    Liu Q; Dang C; Cao J
    IEEE Trans Neural Netw; 2010 Jul; 21(7):1140-8. PubMed ID: 20659863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and Performance of Imperfect Dual Neural Network-Based kWTA Networks.
    Feng R; Leung CS; Sum J; Xiao Y
    IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2188-93. PubMed ID: 25376043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributed k-Winners-Take-All Network: An Optimization Perspective.
    Zhang Y; Li S; Weng J
    IEEE Trans Cybern; 2023 Aug; 53(8):5069-5081. PubMed ID: 35576426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Distributed k-Winners-Take-All Model With Binary Consensus Protocols.
    Wang X; Yang S; Guo Z; Ge Q; Wen S; Huang T
    IEEE Trans Cybern; 2024 May; 54(5):3327-3337. PubMed ID: 38051607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis on the convergence time of dual neural network-based kWTA.
    Xiao Y; Liu Y; Leung CS; Sum JP; Ho K
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):676-82. PubMed ID: 24805051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust k-WTA Network Generation, Analysis, and Applications to Multiagent Coordination.
    Qi Y; Jin L; Luo X; Shi Y; Liu M
    IEEE Trans Cybern; 2022 Aug; 52(8):8515-8527. PubMed ID: 34133299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-Based Winner-Take-All Computation: Fundamental Limits and Order-Optimal Circuits.
    Su L; Chang CJ; Lynch N
    Neural Comput; 2019 Dec; 31(12):2523-2561. PubMed ID: 31614103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general mean-based iterative winner-take-all neural network.
    Yang JF; Chen CM; Wang WC; Lee JY
    IEEE Trans Neural Netw; 1995; 6(1):14-24. PubMed ID: 18263281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.
    Li S; Li Y; Wang Z
    Neural Netw; 2013 Mar; 39():27-39. PubMed ID: 23334164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a Winner-Take-All Neural Network.
    KINCAID TG; COHEN MA; FANG Y
    Neural Netw; 1996 Oct; 9(7):1141-1154. PubMed ID: 12662589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed Dynamic Task Allocation for Moving Target Tracking of Networked Mobile Robots Using k -WTA Network.
    Liu K; Zhang Y
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38526892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two k-winners-take-all networks with discontinuous activation functions.
    Liu Q; Wang J
    Neural Netw; 2008; 21(2-3):406-13. PubMed ID: 18243655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new recurrent neural network for solving convex quadratic programming problems with an application to the k-winners-take-all problem.
    Hu X; Zhang B
    IEEE Trans Neural Netw; 2009 Apr; 20(4):654-64. PubMed ID: 19228555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer Winner-Take-All neural networks based on existing competitive structures.
    Chen CM; Yang JF
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):25-30. PubMed ID: 18244726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.