These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37796938)

  • 1. The Role of Grain Boundary Sites for the Oxidation of Copper Catalysts during the CO Oxidation Reaction.
    Nilsson S; El Berch JN; Albinsson D; Fritzsche J; Mpourmpakis G; Langhammer C
    ACS Nano; 2023 Oct; 17(20):20284-20298. PubMed ID: 37796938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving single Cu nanoparticle oxidation and Kirkendall void formation with in situ plasmonic nanospectroscopy and electrodynamic simulations.
    Nilsson S; Albinsson D; Antosiewicz TJ; Fritzsche J; Langhammer C
    Nanoscale; 2019 Nov; 11(43):20725-20733. PubMed ID: 31650143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting CO Catalytic Oxidation Performance via Highly Dispersed Copper Atomic Clusters: Regulated Electron Interaction and Reaction Pathways.
    Chen D; Su Z; Si W; Qu Y; Zhao X; Liu H; Yang Y; Wang Y; Peng Y; Chen J; Li J
    Environ Sci Technol; 2023 Feb; 57(7):2928-2938. PubMed ID: 36752384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Plasmonic Nanospectroscopy of the CO Oxidation Reaction over Single Pt Nanoparticles.
    Liu S; Arce AS; Nilsson S; Albinsson D; Hellberg L; Alekseeva S; Langhammer C
    ACS Nano; 2019 May; 13(5):6090-6100. PubMed ID: 31091069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper catalysis at operando conditions-bridging the gap between single nanoparticle probing and catalyst-bed-averaging.
    Albinsson D; Boje A; Nilsson S; Tiburski C; Hellman A; Ström H; Langhammer C
    Nat Commun; 2020 Sep; 11(1):4832. PubMed ID: 32973158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopattering in CeOx/Cu(111): A New Type of Surface Reconstruction and Enhancement of Catalytic Activity.
    Senanayake SD; Sadowski JT; Evans J; Kundu S; Agnoli S; Yang F; Stacchiola D; Flege JI; Hrbek J; Rodriguez JA
    J Phys Chem Lett; 2012 Apr; 3(7):839-43. PubMed ID: 26286407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grain Boundary Engineering of Cu-Ag Thin-Film Catalysts for Selective (Photo)Electrochemical CO
    Dong WJ; Lim JW; Hong DM; Kim J; Park JY; Cho WS; Baek S; Lee JL
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18905-18913. PubMed ID: 33848138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.
    Reske R; Mistry H; Behafarid F; Roldan Cuenya B; Strasser P
    J Am Chem Soc; 2014 May; 136(19):6978-86. PubMed ID: 24746172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grain boundary engineering for efficient and durable electrocatalysis.
    Geng X; Vega-Paredes M; Wang Z; Ophus C; Lu P; Ma Y; Zhang S; Scheu C; Liebscher CH; Gault B
    Nat Commun; 2024 Oct; 15(1):8534. PubMed ID: 39358376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles.
    Feng X; Jiang K; Fan S; Kanan MW
    ACS Cent Sci; 2016 Mar; 2(3):169-74. PubMed ID: 27163043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation.
    Khan WU; Yu IKM; Sun Y; Polson MIJ; Golovko V; Lam FLY; Ogino I; Tsang DCW; Yip ACK
    Environ Pollut; 2021 Jun; 279():116899. PubMed ID: 33743438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO
    DeSario PA; Pietron JJ; Brintlinger TH; McEntee M; Parker JF; Baturina O; Stroud RM; Rolison DR
    Nanoscale; 2017 Aug; 9(32):11720-11729. PubMed ID: 28776054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO oxidation on inverse CeO(x)/Cu(111) catalysts: high catalytic activity and ceria-promoted dissociation of O2.
    Yang F; Graciani J; Evans J; Liu P; Hrbek J; Sanz JF; Rodriguez JA
    J Am Chem Soc; 2011 Mar; 133(10):3444-51. PubMed ID: 21341793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth Kinetics of Individual Co Particles Ex-solved on SrTi
    Jo YR; Koo B; Seo MJ; Kim JK; Lee S; Kim K; Han JW; Jung W; Kim BJ
    J Am Chem Soc; 2019 Apr; 141(16):6690-6697. PubMed ID: 30938992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ preparation of sulfonated carbonaceous copper oxide-zirconia nanocomposite as a novel and recyclable solid acid catalyst for reduction of 4-nitrophenol.
    Farrag M
    Sci Rep; 2023 Jun; 13(1):10123. PubMed ID: 37349346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Atom Dynamics in Chemical Reactions.
    Boyes ED; LaGrow AP; Ward MR; Mitchell RW; Gai PL
    Acc Chem Res; 2020 Feb; 53(2):390-399. PubMed ID: 32022555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.