These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37797172)

  • 1. A Leaf-Patchable Reflectance Meter for In Situ Continuous Monitoring of Chlorophyll Content.
    Zhang K; Li W; Li H; Luo Y; Li Z; Wang X; Chen X
    Adv Sci (Weinh); 2023 Dec; 10(35):e2305552. PubMed ID: 37797172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Implementation of a Low-Cost Chlorophyll Content Meter.
    Kamarianakis Z; Panagiotakis S
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.
    Gitelson AA; Gritz Y; Merzlyak MN
    J Plant Physiol; 2003 Mar; 160(3):271-82. PubMed ID: 12749084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber.
    de Souza R; Grasso R; Peña-Fleitas MT; Gallardo M; Thompson RB; Padilla FM
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Responses of Various Chlorophyll Meters to Increasing Nitrogen Supply in Sweet Pepper.
    Padilla FM; de Souza R; Peña-Fleitas MT; Gallardo M; Giménez C; Thompson RB
    Front Plant Sci; 2018; 9():1752. PubMed ID: 30542364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The implementation of the SPAD-502 Chlorophyll meter for the quantification of nitrogen content in Arabica coffee leaves.
    Wicharuck S; Suang S; Chaichana C; Chromkaew Y; Mawan N; Soilueang P; Khongdee N
    MethodsX; 2024 Jun; 12():102566. PubMed ID: 38287962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development and test of a wheat chlorophyll, nitrogen and water content meter].
    Yu B; Sun M; Han SQ; Xia JW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Aug; 31(8):2294-7. PubMed ID: 22007436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturized Vis-NIR handheld spectrometer for non-invasive pigment quantification in agritech applications.
    Dinish US; Teng MTJ; Xinhui VT; Dev K; Tan JJ; Koh SS; Urano D; Olivo M
    Sci Rep; 2023 Jun; 13(1):9524. PubMed ID: 37308523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics.
    Xiong D; Chen J; Yu T; Gao W; Ling X; Li Y; Peng S; Huang J
    Sci Rep; 2015 Aug; 5():13389. PubMed ID: 26303807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids.
    Cerovic ZG; Masdoumier G; Ghozlen NB; Latouche G
    Physiol Plant; 2012 Nov; 146(3):251-60. PubMed ID: 22568678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line monitoring of plant water status: Validation of a novel sensor based on photon attenuation of radiation through the leaf.
    Cecilia B; Francesca A; Dalila P; Carlo S; Antonella G; Francesco F; Marco R; Mauro C
    Sci Total Environ; 2022 Apr; 817():152881. PubMed ID: 34998761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf spectroscopy.
    Wang S; Guan K; Wang Z; Ainsworth EA; Zheng T; Townsend PA; Li K; Moller C; Wu G; Jiang C
    J Exp Bot; 2021 Feb; 72(2):341-354. PubMed ID: 32937655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating leaf photosynthesis of C
    Tsujimoto K; Hikosaka K
    Photosynth Res; 2021 May; 148(1-2):33-46. PubMed ID: 33909221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen concentration estimation in tomato leaves by VIS-NIR non-destructive spectroscopy.
    Ulissi V; Antonucci F; Benincasa P; Farneselli M; Tosti G; Guiducci M; Tei F; Costa C; Pallottino F; Pari L; Menesatti P
    Sensors (Basel); 2011; 11(6):6411-24. PubMed ID: 22163962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of plant chlorophyll content using Google Glass.
    Cortazar B; Koydemir HC; Tseng D; Feng S; Ozcan A
    Lab Chip; 2015 Apr; 15(7):1708-16. PubMed ID: 25669673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthocyanin contribution to chlorophyll meter readings and its correction.
    Hlavinka J; Nauš J; Špundová M
    Photosynth Res; 2013 Dec; 118(3):277-95. PubMed ID: 24129637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Leaf Positions for SPAD Meter Measurement in Rice.
    Yuan Z; Cao Q; Zhang K; Ata-Ul-Karim ST; Tian Y; Zhu Y; Cao W; Liu X
    Front Plant Sci; 2016; 7():719. PubMed ID: 27303416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analyses of woody species exposed to air pollution based on ecophysiological measurements.
    Wen D; Kuang Y; Zhou G
    Environ Sci Pollut Res Int; 2004; 11(3):165-70. PubMed ID: 15259699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of nitrogen and water status in oat leaves using optical sensing approach.
    Zhao B; Ma BL; Hu Y; Liu J
    J Sci Food Agric; 2015 Jan; 95(2):367-78. PubMed ID: 24796652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.