These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37797346)

  • 1. Melting Process of Frozen Sessile Droplets on Superhydrophobic Surfaces.
    Cui J; Wang T; Che Z
    Langmuir; 2023 Oct; 39(41):14800-14810. PubMed ID: 37797346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing-Melting Mediated Dewetting Transition for Droplets on Superhydrophobic Surfaces with Condensation.
    Cui J; Wang T; Che Z
    Langmuir; 2024 Jul; 40(28):14685-14696. PubMed ID: 38970799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freezing of Nanofluid Droplets on Superhydrophobic Surfaces.
    Li X; Yu J; Hu D; Li Q; Chen X
    Langmuir; 2020 Nov; 36(43):13034-13040. PubMed ID: 33095587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the Effect of Antibody-Antigen Reactions on the Internal Convection in a Sessile Droplet via Microparticle Image Velocimetry and DLVO Analysis.
    Rathaur VS; Kumar S; Panigrahi PK; Panda S
    Langmuir; 2020 Aug; 36(30):8826-8838. PubMed ID: 32628853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous self-dislodging of freezing water droplets and the role of wettability.
    Graeber G; Schutzius TM; Eghlidi H; Poulikakos D
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Activation of Superhydrophobic Surfaces with Triple Icephobicity at Low Temperatures.
    Sun Y; Wang Y; Liang W; He L; Wang F; Zhu D; Zhao H
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49352-49361. PubMed ID: 36260496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process.
    Xu Y; Zhang G; Li L; Xu C; Lv X; Zhang H; Yao W
    J Colloid Interface Sci; 2019 Sep; 552():613-621. PubMed ID: 31170614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Surface Icephobicity on an Elastic Substrate.
    He Z; Jamil MI; Li T; Zhang Q
    Langmuir; 2022 Jan; 38(1):18-35. PubMed ID: 34919404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damping the jump of coalescing droplets through substrate compliance.
    Pal GC; Agrawal M; Siddhartha SS; Sharma CS
    Soft Matter; 2024 Jul; ():. PubMed ID: 39076071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.
    Dash S; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042402. PubMed ID: 24827255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saltwater icephobicity: Influence of surface chemistry on saltwater icing.
    Carpenter K; Bahadur V
    Sci Rep; 2015 Dec; 5():17563. PubMed ID: 26626958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.