BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37797709)

  • 1. Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling.
    Ahmad F; Soe S; Albon J; Errington R; Theobald P
    Acta Biomater; 2023 Nov; 171():166-192. PubMed ID: 37797709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical properties and microstructure of human ventricular myocardium.
    Sommer G; Schriefl AJ; Andrä M; Sacherer M; Viertler C; Wolinski H; Holzapfel GA
    Acta Biomater; 2015 Sep; 24():172-92. PubMed ID: 26141152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region-Specific Microstructure in the Neonatal Ventricles of a Porcine Model.
    Ahmad F; Soe S; White N; Johnston R; Khan I; Liao J; Jones M; Prabhu R; Maconochie I; Theobald P
    Ann Biomed Eng; 2018 Dec; 46(12):2162-2176. PubMed ID: 30014287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical properties and microstructure of neonatal porcine ventricles.
    Ahmad F; Prabhu RJ; Liao J; Soe S; Jones MD; Miller J; Berthelson P; Enge D; Copeland KM; Shaabeth S; Johnston R; Maconochie I; Theobald PS
    J Mech Behav Biomed Mater; 2018 Dec; 88():18-28. PubMed ID: 30118921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional biomechanical characterization of human ascending aortic aneurysms: Microstructure and biaxial mechanical response.
    Cosentino F; Sherifova S; Sommer G; Raffa G; Pilato M; Pasta S; Holzapfel GA
    Acta Biomater; 2023 Oct; 169():107-117. PubMed ID: 37579911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
    Pineda-Castillo SA; Aparicio-Ruiz S; Burns MM; Laurence DW; Bradshaw E; Gu T; Holzapfel GA; Lee CH
    Acta Biomater; 2022 Sep; 150():295-309. PubMed ID: 35905825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.
    Thomas VS; Lai V; Amini R
    Acta Biomater; 2019 Aug; 94():524-535. PubMed ID: 31229629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the microstructure of the human aortic adventitia under biaxial loading investigated by multi-photon microscopy.
    Pukaluk A; Wolinski H; Viertler C; Regitnig P; Holzapfel GA; Sommer G
    Acta Biomater; 2023 Apr; 161():154-169. PubMed ID: 36812954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of enzyme-based removal of collagen and elastin constituents on the biaxial mechanical responses of porcine atrioventricular heart valve anterior leaflets.
    Ross CJ; Laurence DW; Echols AL; Babu AR; Gu T; Duginski GA; Johns CH; Mullins BT; Casey KM; Laurence KA; Zhao YD; Amini R; Fung KM; Mir A; Burkhart HM; Wu Y; Holzapfel GA; Lee CH
    Acta Biomater; 2021 Nov; 135():425-440. PubMed ID: 34481053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biventricular biaxial mechanical testing and constitutive modelling of fetal porcine myocardium passive stiffness.
    Ren M; Ong CW; Buist ML; Yap CH
    J Mech Behav Biomed Mater; 2022 Oct; 134():105383. PubMed ID: 35932646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the microtubule network in the passive anisotropic viscoelasticity of right ventricle with pulmonary hypertension progression.
    LeBar K; Liu W; Pang J; Chicco AJ; Wang Z
    Acta Biomater; 2024 Mar; 176():293-303. PubMed ID: 38272197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A viscoelastic model for human myocardium.
    Nordsletten D; Capilnasiu A; Zhang W; Wittgenstein A; Hadjicharalambous M; Sommer G; Sinkus R; Holzapfel GA
    Acta Biomater; 2021 Nov; 135():441-457. PubMed ID: 34487858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An updated Lagrangian constrained mixture model of pathological cardiac growth and remodelling.
    Guan D; Zhuan X; Luo X; Gao H
    Acta Biomater; 2023 Aug; 166():375-399. PubMed ID: 37201740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-scale computational model for the passive mechanical behavior of right ventricular myocardium.
    Li DS; Mendiola EA; Avazmohammadi R; Sachse FB; Sacks MS
    J Mech Behav Biomed Mater; 2023 Jun; 142():105788. PubMed ID: 37060716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressibility and Anisotropy of the Ventricular Myocardium: Experimental Analysis and Microstructural Modeling.
    McEvoy E; Holzapfel GA; McGarry P
    J Biomech Eng; 2018 Aug; 140(8):. PubMed ID: 30003247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Right ventricular myocardial mechanics: Multi-modal deformation, microstructure, modeling, and comparison to the left ventricle.
    Kakaletsis S; Meador WD; Mathur M; Sugerman GP; Jazwiec T; Malinowski M; Lejeune E; Timek TA; Rausch MK
    Acta Biomater; 2021 Mar; 123():154-166. PubMed ID: 33338654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear properties of passive ventricular myocardium.
    Dokos S; Smaill BH; Young AA; LeGrice IJ
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2650-9. PubMed ID: 12427603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.