BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 3779816)

  • 1. Arginine vasopressin causes morphological changes suggestive of fluid transport in rat choroid plexus epithelium.
    Liszczak TM; Black PM; Foley L
    Cell Tissue Res; 1986; 246(2):379-85. PubMed ID: 3779816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AVP V1 receptor-mediated decrease in Cl- efflux and increase in dark cell number in choroid plexus epithelium.
    Johanson CE; Preston JE; Chodobski A; Stopa EG; Szmydynger-Chodobska J; McMillan PN
    Am J Physiol; 1999 Jan; 276(1):C82-90. PubMed ID: 9886923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hypothalamo-choridal tract. II. Ultrastructural response of the choroid plexus to vasopressin.
    Schultz WJ; Brownfield MS; Kozlowski GP
    Cell Tissue Res; 1977 Mar; 178(1):129-41. PubMed ID: 837423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The presence of arginine vasopressin and its mRNA in rat choroid plexus epithelium.
    Chodobski A; Loh YP; Corsetti S; Szmydynger-Chodobska J; Johanson CE; Lim YP; Monfils PR
    Brain Res Mol Brain Res; 1997 Aug; 48(1):67-72. PubMed ID: 9379851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors.
    Faraci FM; Mayhan WG; Heistad DD
    Am J Physiol; 1990 Jan; 258(1 Pt 2):R94-8. PubMed ID: 2137302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt-loading increases vasopressin and vasopressin 1b receptor mRNA in the hypothalamus and choroid plexus.
    Zemo DA; McCabe JT
    Neuropeptides; 2001; 35(3-4):181-8. PubMed ID: 11884209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain.
    Akanuma SI; Yamazaki Y; Kubo Y; Hosoya KI
    Fluids Barriers CNS; 2018 Jan; 15(1):1. PubMed ID: 29307307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of vasopressin, aldosterone and angiotensin on the permeability of the choroid plexus to water].
    Perekhval'skaia TV; Kurduban LI; Goriunova TE; Finkinshteĭn IaD
    Fiziol Zh SSSR Im I M Sechenova; 1987 Mar; 73(3):424-9. PubMed ID: 3582700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choroid plexus as a barrier to immunoglobulin delivery into cerebrospinal fluid.
    Aleshire SL; Hajdu I; Bradley CA; Parl FF
    J Neurosurg; 1985 Oct; 63(4):593-7. PubMed ID: 4032024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humoral regulation of blood flow to choroid plexus: role of arginine vasopressin.
    Faraci FM; Mayhan WG; Farrell WJ; Heistad DD
    Circ Res; 1988 Aug; 63(2):373-9. PubMed ID: 3396158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEPT2 (Slc15a2)-mediated unidirectional transport of cefadroxil from cerebrospinal fluid into choroid plexus.
    Shen H; Keep RF; Hu Y; Smith DE
    J Pharmacol Exp Ther; 2005 Dec; 315(3):1101-8. PubMed ID: 16107517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic interactions between cytokines and AVP at the blood-CSF barrier result in increased chemokine production and augmented influx of leukocytes after brain injury.
    Szmydynger-Chodobska J; Gandy JR; Varone A; Shan R; Chodobski A
    PLoS One; 2013; 8(11):e79328. PubMed ID: 24223928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of arginine vasopressin on blood vessels of the perfused choroid plexus of the sheep.
    Segal MB; Chodobski A; Szmydynger-Chodobska J; Cammish H
    Prog Brain Res; 1992; 91():451-3. PubMed ID: 1410431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid.
    Lindvall M; Owman C
    J Cereb Blood Flow Metab; 1981; 1(3):245-66. PubMed ID: 6276421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous and continuous measurement of choroid plexus blood flow and cerebrospinal fluid production: effects of vasoactive intestinal polypeptide.
    Nilsson C; Lindvall-Axelsson M; Owman C
    J Cereb Blood Flow Metab; 1991 Sep; 11(5):861-7. PubMed ID: 1874819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic hypernatremia increases the expression of vasopressin and voltage-gated Na channels in the rat choroid plexus.
    Szmydynger-Chodobska J; Chung I; Chodobski A
    Neuroendocrinology; 2006; 84(5):339-45. PubMed ID: 17164538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system.
    Nilsson C; Lindvall-Axelsson M; Owman C
    Brain Res Brain Res Rev; 1992; 17(2):109-38. PubMed ID: 1393190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leptin transport at the blood--cerebrospinal fluid barrier using the perfused sheep choroid plexus model.
    Thomas SA; Preston JE; Wilson MR; Farrell CL; Segal MB
    Brain Res; 2001 Mar; 895(1-2):283-90. PubMed ID: 11259792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticosteroid action on choroid plexus: reduction in Na+-K+-ATPase activity, choline transport capacity, and rate of CSF formation.
    Lindvall-Axelsson M; Hedner P; Owman C
    Exp Brain Res; 1989; 77(3):605-10. PubMed ID: 2553468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stilbenes inhibit exchange of chloride between blood, choroid plexus and cerebrospinal fluid.
    Deng QS; Johanson CE
    Brain Res; 1989 Oct; 501(1):183-7. PubMed ID: 2804695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.