These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37798180)

  • 1. Screening metallic diffusion barriers for weldable thermoelectric devices.
    Liu M; Zhang X; Tang J; Chen Z; Li W; Pei Y
    Sci Bull (Beijing); 2023 Nov; 68(21):2536-2539. PubMed ID: 37798180
    [No Abstract]   [Full Text] [Related]  

  • 2. Solving the Thermoelectric Trade-Off Problem with Metallic Carbon Nanotubes.
    Ichinose Y; Yoshida A; Horiuchi K; Fukuhara K; Komatsu N; Gao W; Yomogida Y; Matsubara M; Yamamoto T; Kono J; Yanagi K
    Nano Lett; 2019 Oct; 19(10):7370-7376. PubMed ID: 31498635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Interfacial Thermal Stability of Flexible Flake-Structured Aluminum Thin-Film Electrodes for Bi
    Wang Y; Zhu P; Li W; Liu X; Li H; Deng Y; Tan M
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12920-12926. PubMed ID: 35239312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering In Situ Weldable Vascular Devices.
    Cohn D; Widlan F; Zarek M; Peselev Z; Bloom AI
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the thermoelectric properties in bilayer graphene structures induced by Fano resonances.
    Briones-Torres JA; Pérez-Álvarez R; Molina-Valdovinos S; Rodríguez-Vargas I
    Sci Rep; 2021 Jul; 11(1):13872. PubMed ID: 34230518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ni Substitution on Thermoelectric Properties of Bulk
    Sam S; Odagawa S; Nakatsugawa H; Okamoto Y
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening Metal Electrodes for Thermoelectric PbTe.
    Liu M; Zhang X; Wu Y; Bu Z; Chen Z; Li W; Pei Y
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6169-6176. PubMed ID: 36656557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance Spectroscopy Analysis of Thermoelectric Modules Fabricated with Metallic Outer External Layers.
    Beltrán-Pitarch B; García-Cañadas J
    ACS Appl Electron Mater; 2021 Nov; 3(11):4803-4808. PubMed ID: 34970646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Earth-Abundant Fe-Al-Si Thermoelectric (FAST) Materials: from Fundamental Materials Research to Module Development.
    Takagiwa Y; Ikeda T; Kojima H
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48804-48810. PubMed ID: 33054167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Interface Materials between Bi
    Shen L; Chen Y; Niu B; Liu Z; Qin J; Xie J
    ACS Appl Mater Interfaces; 2022 May; 14(18):21106-21115. PubMed ID: 35475614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of side substitution and quantum interference on the performance of molecular thermoelectric devices: a brief review.
    Tan S; Zeng J; Peng X; Chen KQ
    J Phys Condens Matter; 2023 Jun; 35(37):. PubMed ID: 37276861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of Interfacial Diffusion in Mg
    Wang Y; Chen J; Jiang Y; Ferhat M; Ohno S; Munir ZA; Fan W; Chen S
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35839277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelectric power generation: from new materials to devices.
    Tan G; Ohta M; Kanatzidis MG
    Philos Trans A Math Phys Eng Sci; 2019 Aug; 377(2152):20180450. PubMed ID: 31280713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric behavior of Ruddlesden-Popper series iridates.
    Pallecchi I; Buscaglia MT; Buscaglia V; Gilioli E; Lamura G; Telesio F; Cimberle MR; Marré D
    J Phys Condens Matter; 2016 Feb; 28(6):065601. PubMed ID: 26796073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Chip Sensing of Thermoelectric Thin Film's Merit.
    Xiao Z; Zhu X
    Sensors (Basel); 2015 Jul; 15(7):17232-40. PubMed ID: 26193272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Structural, Mechanical, Optoelectronic, and Thermoelectric Properties of BaXF
    Khattak SA; Abohashrh M; Ahmad I; Husain M; Ullah I; Zulfiqar S; Rooh G; Rahman N; Khan G; Khan T; Salman Khan M; Shah SK; Tirth V
    ACS Omega; 2023 Feb; 8(6):5274-5284. PubMed ID: 36816671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion Behavior in Volcanic Soils: In Search of Candidate Materials for Thermoelectric Devices.
    Berlanga-Labari C; Catalán L; Palacio JF; Pérez G; Astrain D
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices.
    Ma Z; Liu Y; Deng L; Zhang M; Zhang S; Ma J; Song P; Liu Q; Ji A; Yang F; Wang X
    Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29385759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery.
    Balva M; Legeai S; Garoux L; Leclerc N; Meux E
    Environ Technol; 2017 Apr; 38(7):791-797. PubMed ID: 27454773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior Thermoelectric Properties of Twist-Angle Superlattice Borophene Induced by Interlayer Electrons Transport.
    Song J; Cao Y; Dong J; Sun M
    Small; 2023 Jun; 19(25):e2301348. PubMed ID: 36919623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.