These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37798250)

  • 1. Interpretable modeling of time-resolved single-cell gene-protein expression with CrossmodalNet.
    Yang Y; Lin YT; Li G; Zhong Y; Xu Q; Cai JJ
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37798250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TSEE: an elastic embedding method to visualize the dynamic gene expression patterns of time series single-cell RNA sequencing data.
    An S; Ma L; Wan L
    BMC Genomics; 2019 Apr; 20(Suppl 2):224. PubMed ID: 30967106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data.
    Xu F; Wang S; Dai X; Mundra PA; Zheng J
    Methods; 2021 May; 189():65-73. PubMed ID: 33039573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features.
    Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J
    Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations.
    Mondal AK; Joshi I; Singh P; Ap P
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1983-1994. PubMed ID: 37015582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.