These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37798392)
1. Effects of MRI scanner manufacturers in classification tasks with deep learning models. Kushol R; Parnianpour P; Wilman AH; Kalra S; Yang YH Sci Rep; 2023 Oct; 13(1):16791. PubMed ID: 37798392 [TBL] [Abstract][Full Text] [Related]
2. Mitigating site effects in covariance for machine learning in neuroimaging data. Chen AA; Beer JC; Tustison NJ; Cook PA; Shinohara RT; Shou H; Hum Brain Mapp; 2022 Mar; 43(4):1179-1195. PubMed ID: 34904312 [TBL] [Abstract][Full Text] [Related]
3. Deep learning for the harmonization of structural MRI scans: a survey. Abbasi S; Lan H; Choupan J; Sheikh-Bahaei N; Pandey G; Varghese B Biomed Eng Online; 2024 Aug; 23(1):90. PubMed ID: 39217355 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal. Dinsdale NK; Jenkinson M; Namburete AIL Neuroimage; 2021 Mar; 228():117689. PubMed ID: 33385551 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning Body Region Classification of MRI and CT Examinations. Raffy P; Pambrun JF; Kumar A; Dubois D; Patti JW; Cairns RA; Young R J Digit Imaging; 2023 Aug; 36(4):1291-1301. PubMed ID: 36894697 [TBL] [Abstract][Full Text] [Related]
7. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans. Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J Elife; 2022 Dec; 11():. PubMed ID: 36546674 [TBL] [Abstract][Full Text] [Related]
8. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
9. MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data. Torbati ME; Minhas DS; Laymon CM; Maillard P; Wilson JD; Chen CL; Crainiceanu CM; DeCarli CS; Hwang SJ; Tudorascu DL Med Image Anal; 2023 Oct; 89():102926. PubMed ID: 37595405 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning for Real-time, Automatic, and Scanner-adapted Prostate (Zone) Segmentation of Transrectal Ultrasound, for Example, Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy. van Sloun RJG; Wildeboer RR; Mannaerts CK; Postema AW; Gayet M; Beerlage HP; Salomon G; Wijkstra H; Mischi M Eur Urol Focus; 2021 Jan; 7(1):78-85. PubMed ID: 31028016 [TBL] [Abstract][Full Text] [Related]
11. Image-encoded biological and non-biological variables may be used as shortcuts in deep learning models trained on multisite neuroimaging data. Souza R; Wilms M; Camacho M; Pike GB; Camicioli R; Monchi O; Forkert ND J Am Med Inform Assoc; 2023 Nov; 30(12):1925-1933. PubMed ID: 37669158 [TBL] [Abstract][Full Text] [Related]
13. Comparison of different approaches to manage multi-site magnetic resonance spectroscopy clinical data analysis. La PL; Bell TK; Craig W; Doan Q; Beauchamp MH; Zemek R; Yeates KO; Harris AD Front Psychol; 2023; 14():1130188. PubMed ID: 37151330 [TBL] [Abstract][Full Text] [Related]
14. SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer. Kushol R; Luk CC; Dey A; Benatar M; Briemberg H; Dionne A; Dupré N; Frayne R; Genge A; Gibson S; Graham SJ; Korngut L; Seres P; Welsh RC; Wilman AH; Zinman L; Kalra S; Yang YH Comput Med Imaging Graph; 2023 Sep; 108():102279. PubMed ID: 37573646 [TBL] [Abstract][Full Text] [Related]
15. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process. Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641 [TBL] [Abstract][Full Text] [Related]
16. Investigation of ComBat Harmonization on Radiomic and Deep Features from Multi-Center Abdominal MRI Data. Jia W; Li H; Ali R; Shanbhogue KP; Masch WR; Aslam A; Harris DT; Reeder SB; Dillman JR; He L J Imaging Inform Med; 2024 Sep; ():. PubMed ID: 39284979 [TBL] [Abstract][Full Text] [Related]
17. On the reliability of deep learning-based classification for Alzheimer's disease: Multi-cohorts, multi-vendors, multi-protocols, and head-to-head validation. Song YH; Yi JY; Noh Y; Jang H; Seo SW; Na DL; Seong JK Front Neurosci; 2022; 16():851871. PubMed ID: 36161156 [TBL] [Abstract][Full Text] [Related]
18. Domain generalization in deep learning for contrast-enhanced imaging. Sendra-Balcells C; Campello VM; Martín-Isla C; Viladés D; Descalzo ML; Guala A; Rodríguez-Palomares JF; Lekadir K Comput Biol Med; 2022 Oct; 149():106052. PubMed ID: 36055164 [TBL] [Abstract][Full Text] [Related]
19. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging. Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561 [TBL] [Abstract][Full Text] [Related]
20. Self-supervised learning for multi-center magnetic resonance imaging harmonization without traveling phantoms. Chang X; Cai X; Dan Y; Song Y; Lu Q; Yang G; Nie S Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35732167 [No Abstract] [Full Text] [Related] [Next] [New Search]